Выбор модуля и перебор случаев в уравнениях над Z
Ошибка.
Попробуйте повторить позже
Найдите все натуральные и
такие, что
Подсказка 1
Сократим каждую из частей на n. Имеем (n-1)!+1=n^{k-1}. Могут ли числа (n-1)! и n^{k-1} иметь общие делители, отличные от 1?
Подсказка 2
Нет. Предположим, что каждое из чисел (n-1)! и n^{k-1} делится на число d>1, тогда 1=n^{k-1}-(n-1)! делится на d, тем самым получено противоречие. Таким образом, числа (n-1)! и n^{k-1} взаимнопросты. Что в этом случае можно сказать про число n?
Подсказка 3
Оно является простым. Действительно, произведение 1*2*...*(n-1) взаимнопросто с n, следовательно, каждый из множителей 1, 2, ...,(n-1) взаимнопрост с n, но если n не является простым, то среди чисел из множества множителей найдется его делитель. Введем новое обозначение n=p и перепишем исходное уравнение в виде p^{k-1}-1=(p-1)!. Каким образом можно разложить левую часть на множители?
Подсказка 4
Имеем p^{k-1}-1=(p-1)(p^{k-2}+p^{k-1}+...+1). Сократив левую и правую часть на p-1, получим p^{k-2}+p^{k-1}+...+1=(p-2)!. До сих пор нам мало известно про число k. По какому модулю можно рассмотреть данное уравнение, чтобы найти естественное условие на k?
Подсказка 5
Рассмотрим полученное уравнение по модулю p-1. Каждое из слагаемых вида p^m сравнимо с 1 по модулю p-1. Таким образом, левая часть сравнима с k-1 по модулю p-1. Правая - с 0. Отсюда получим, что k-1 кратно p-1. Таким образом, k не меньше, чем p. Что данная оценка позволяет понять про исходное неравенство?
Подсказка 6
Наконец, мы получили, что p!+p=p^k⩾p^p, что неверно при достаточно больших p. Осталось найти p, при котором данное неравенство неверно, и разобрать все меньшие случаи.
Сначала разберем случаи Непосредственной проверкой убеждаемся, что решениями будут пары
Далее считаем, что Сократив равенство на
получим
Заметим, что
Тогда
взаимно
просто с
что возможно только если
— простое. Для удобства переобозначим
Тогда
Сократив на
получим
Посмотрим на это равенство по модулю
Заметим, что
и
откуда
следовательно, То есть
Тогда
что неверно при
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!