Выбор модуля и перебор случаев в уравнениях над Z
Ошибка.
Попробуйте повторить позже
Найдите все простые числа и такие, что
Подсказка 1
Раскрытие скобок не приносит хороших результатов, но мы знаем, что спрашивают именно про простые решения, поэтому можно попробовать сказать что-нибудь про делимость. По какому модулю полезно рассмотреть это уравнение?
Подсказка 2
Конечно, по простому модулю из нашего уравнения. Возьмём, например, р. Тогда -q²≡ q² (mod p). Какие выводы из этого можно сделать?
Рассмотрим это уравнение по модулю Тогда получается сравнение Тогда делится на поэтому или делится на Так как и простые, то это означает, что либо либо Для случая получаем, что то есть что невозможно. Если же то после подстановки и преобразований получаем уравнение неразрешимое в целых числах.
таких и не существует
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!