Тема . Уравнения в целых числах

Оценки в уравнениях над Z

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68183

Решите в натуральных числах уравнение

 b        a
a + a+b =b

Источники: ФЕ-2023, 11.5 (см. www.formulo.org)

Подсказки к задаче

Подсказка 1

Давайте сначала переберем значения b. При 1 нет решений, при 2 можно найти одно решение. А дальше уже не хочется смотреть...и мы начинаем понимать тендецию, что справа будет стоять экспонента от a, а слева - многочлен...Как теперь строго описать этот феномен?

Подсказка 2

Вот давайте теперь предположим, что b хотя бы 3, а a хотя бы 2. Посмотрим на a^b + a + b. Вот пара оценок на помощь: a^b < a^b + a + b < a^b + ab < a^b +ba^(b-2). А как это еще можно оценить так, чтобы справа вышло тоже что-то в степени b?

Подсказка 3

Как (a+1/a)^b! Это проверяется с помощью бинома Ньютона. То есть, вышло что a^b < b^a < (a+1/a)^b. Те, кто рассматривал уравнение вида a^b = b^a знают, что нужно дальше делать) А кто нет, то вот что: приведите эти три функции к почти одинаковому виду, а после посмотрите на скорость роста функции.

Подсказка 4

Прологарифмируем и поделим на ab! выйдет: ln(a+1/a)/a > ln(b)/b > ln(a)/a. Рассмотрите производную функции ln(x)/x и поймете, как она себя ведет. А дальше надо подумать про самое больше число в этой цепочке неравенств...

Подсказка 5

С помощью производной ln(x)/x, можно понять, что нет решений при b ≥ a ≥ 3 и c a = 2, b ≥ 4. Теперь предлагается вот что: можно получить противоречие с тем, что самое наибольшее слагаемое в цепочке - не наибольшее. докажите, что ln(a+1/a)/a < ln(a-1)/(a-1) при a ≥ 4, также с помощью производных)

Показать ответ и решение

Если a =1  или b= 1,  то решений нет. Если b= 2,  то получим 2a = a2 +a+ 1.  При a< 5  решений нет, a= 5  подходит, а при a≥ 5  левая часть увеличивается менее чем в два раза при увеличении a  на 1.  Пусть b≥ 3.  Тогда

                              (   1)b
ba = ab+ a+ b≤ ab+ab≤ ab+ bab−2 < a+ a

Последнее неравенство следует из разложения по биному Ньютона для (   )
a +a1b.  Действительно:

(     )
 a + 1 b = ab +b⋅ab−1⋅ 1+ ...
    a               a

Значит,

(   1)b
 a +a   > ba >ab

логарифмируя и деля на ab,  получаем:

 (    )
ln-a+-1a--> lnb-> lna-
   a      b    a

Пусть f(x)= lnx.
      x  Заметим, что f(a)  убывает при a ≥3  и f(2)=f(4)  (у этой функции производная равна f′(x) = 1−lnx,
        x2  и она отрицательна при x> e.  Поэтому нет решений с a= 2,b≥4  и с b ≥a ≥3.

С другой стороны, можно проверить, что

  (   1)
ln-a+-a-< ln(a-− 1)
   a        a− 1

при a≥ 4.  Действительно, при a= 4  это

(   1)3          3  1       4
 4+ 4  = 64+ 12+ 4 + 64 < 81= 3

и производная выражения g(a)= a⋅ln (a− 1)− (a− 1)⋅ln(a+ 1a)  равна

        2                      (    )
− (a−-1)(2a-−-1)+ -a--+ln(a− 1)− ln  a+ 1  =
    a(a + 1)    a− 1                a

                                 (    )
= − a3−-a2−-a+1 +-a--+ln(a− 1)− ln  a+ 1  =
     a(a2+ 1)     a− 1                a

   (   −a2-− 2a+-1) (   --1-)    (-a2+-1)
=−  1+   a3+ a)   +  1+ a− 1  − ln a(a− 1) =

  a2+ 2a− 1   1     ( a2+ 1 )
= --a3+-a--+ a−-1 − ln a(a−-1)

Но (так как ln(1 +x)< x  при x> 0)

 (       )    (        )
ln  -a2-+1-  =ln 1+ a-+1- < -a+-1
   a(a − 1)        a2− a   a2− a

так что

 ′    ---a3−-3a---
g (a)> a(a− 1)(a2+ 1) > 0

уже при a ≥3.  Таким образом, уравнение не имеет решений при a≥ 4.

Замечание. Вместо оценки (    )
 a+ 1a b  можно использовать (a+1)b  (верную при b= 2),  тогда упрощаются вычисления, но нужно перебирать больше исключений.

Ответ:

 a =5,b= 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!