Медианы
Ошибка.
Попробуйте повторить позже
Пусть — точка пересечения медиан треугольника
Оказалось, что
Верно ли, что треугольник
— равносторонний?
Источники:
Подсказка 1:
В этой задаче дан треугольник с некоторыми особенностями. Глобально идея решения звучит так: нужно найти необходимые и достаточные условия, при которых эти особенности реализуются и понять, являются ли они достаточными, чтобы треугольник был равносторонним.
Подсказка 2:
И вот для нахождения этого критерия нужно знать довольно нетривиальный факт. Для любого треугольника существует треугольник, у которого стороны параллельны и равны его медианам. Обязательно докажите это и подумайте, как применить к задаче.
Подсказка 3:
У вас там в условии даны какие-то равенства углов. А что если поперекидывать углы? Что можно сказать про изначальный треугольник и треугольник из медиан?
Подсказка 4:
Вероятно, вы уже многое поняли про задачу. Чтобы закончить решение, вспомните, как выражается медиана через длины сторон треугольника)
Пусть Обозначим середины сторон
через
соответственно, а длины медиан
— через
соответственно.
Заметим, что
Аналогично, Как известно, существует треугольник, стороны которого равны и параллельны медианам треугольника
Построим треугольник
такой, что
Углы этого треугольника будут равны углам между медианами а именно
и
Следовательно, треугольники и
подобны по двум углам, а значит,
По формуле длины медианы треугольника получим
откуда
Первое равенство равносильно
откуда
Предположив, что , получим
откуда
Равенство
также выполняется, что проверяется прямой подстановкой.
Таким образом, под условие задачи подойдёт любой треугольник, длины сторон которого связаны соотношением например,
треугольник со сторонами
Замечание. Треугольники, длины сторон которых связаны соотношением
, называются автомедианнымии.
вообще говоря, нет
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!