Медианы
Ошибка.
Попробуйте повторить позже
Периметр треугольника равен
cм, а отрезок, соединяющий точку пересечения его медиан с точкой пересечения его биссектрис,
параллелен стороне
. Найти длину
.
Источники:
Подсказка 1
Кажется, нужны дополнительные построения... Даны две параллельные прямые — давайте возьмём и через середину стороны BC проведём третью прямую, параллельную им обеим!
Подсказка 2
Какая теорема помогает считать отношения отрезков, когда дано много параллельных прямых? Верно, теорема Фалеса, именно её и стоит применить. Если к этому знанию мы также добавим основное свойство биссектрисы, мы без труда выразим длину AC через длины оставшихся сторон треугольника, т.е. выразим AC через периметр треугольника.
Первое решение.
Обозначим через медиану из вершины
, через
- точку пересечения медиан
, через I - точку пересечения его биссектрис
. Проведём через
прямую параллельно
, пересекающую биссектрису
в точке
- её середине. По теореме
Фалеса
поэтому
. По свойству биссектрис
и
в треугольниках
и
имеем
. Отсюда
Второе решение.
Пусть — биссектрисы,
— медианы,
— высота,
— периметр
Пусть
,
тогда
Отсюда следует
Из отношения высот получим
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!