Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103659

Вершину параллелограмма соединили с серединой его противоположной стороны. Полученный отрезок образует с другой его стороной угол   ∘
30 . Докажите, что отмеченный на рисунке перпендикуляр равен одной из сторон параллелограмма.

PIC

Показать доказательство

Продлим прямую DM  до пересечения с прямой AB.  Пусть они пересекутся в точке N.

PIC

Прямые AB  и CD  параллельны, так как ABCD  — параллелограмм. Отсюда ∠DCM  = ∠NBM  и                  ∘
∠BNM  =∠CDM  = 30 — накрестлежащие при AB ∥ CD  и секущих BC  и ND  соответственно. Получается, ∠DCM  = ∠NBM,  ∠DMC  = ∠NMB  как вертикальные, CM = MB  по условию, то есть треугольники DMC  и NMB  равны по стороне и двум прилежащим к ней углам. Отсюда следует, что CD  =BN.  При этом CD =AB  по определению параллелограмма, то есть BN = AB,  откуда AN = AB + BN =2AB.

Заметим, что треугольник AHN  — прямоугольный треугольник с углом 30∘,  так как AH  ⊥DM  по условию и ∠BNM  = 30∘.  По свойству прямоугольного треугольника с углом 30∘,  катет, лежащий напротив угла в 30∘,  в два раза меньше гипотенузы, то есть AH = 12AN = 12 ⋅2AB = AB.  Итак, перпендикуляр AH  равен стороне параллелограмма AB.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!