Параллелограмм
Ошибка.
Попробуйте повторить позже
Точка — середина стороны
параллелограмма
а точки
и
— основания высот треугольника
опущенных из
вершин
и
соответственно. Докажите, что
Первое решение. Пусть — точка пересечения прямых
и
Углы
и
равны как накрестлежащие при
параллельных прямых
и секущей
Аналогично равны углы
и
следовательно, треугольники
и
подобны по двум углам, кроме этого их соответственные стороны
и
равны, а значит и сами треугольники равны, то есть равны
отрезки
и
что влечет равенство отрезков
и
Наконец, в прямоугольном треугольнике отрезок
является медианой, проведенной из прямого угла, а значит равен отрезку
Аналогично
что завершает доказательство.
Второе решение. Пусть и
— середины отрезков
и
соответственно. Тогда
— средняя линия треугольника
Значит,
и
Получаем, что и
— параллелограммы, а, следовательно,
и треугольники
и
равны по
сторонам. Т.к.
и
— медианы в прямоугольных треугольниках
и
то
и
(треугольник
— р/б)
(треугольник
—
р/б,
)
Получаем, что по
признаку
что и доказывает утверждение
задачи.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!