Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89600

Дан параллелограмм ABCD  (AB ⁄= BC).  Точки E  и G  на прямой CD  таковы, что AC  является биссектрисой каждого из углов EAD  и BAG.  Прямая BC  пересекает AE  и AG  в точках F  и H  соответственно. Докажите, что прямая F G  проходит через середину отрезка HE.

Подсказки к задаче

Подсказка 1

У нас имеется параллелограмм и биссектрисы, а это, значит, равные углы. Попробуем поискать равные углы, дающие пользу.

Подсказка 2

Так, можно обнаружить, что треугольники GAC и FAC являются равнобедренными.

Подсказка 3

Мы получили, что прямая FG - серединный перпендикуляр к AC, осталось найти связь с HE.

Подсказка 4

Полезно рассмотреть треугольники HFA и EFC. Все присутствующие в них точки нас интересуют, а у треугольников много равных элементов.

Показать доказательство

Поскольку ∠ACG = ∠CAB = ∠GAC,  треугольник GAC  — равнобедренный, GA = GC.  Из

∠FEC = ∠FAB = ∠CAB − ∠CAF =∠GAC  − ∠DAC =∠GAD  =∠AHF

и HAF = EF C,  получаем GAF  =GCF.  Так, ∠FAC = ∠FCA,  а значит FAC  — равнобедренный, FA = FC.  Итак, GA = GC,FA = FC,  получается FG  — серединный перпендикуляр к AC.  Поскольку

∠HAF  = ∠ECF,FA = FC,∠YFA = ∠EFC

то по признаку равенства треугольники HFA = EFC ⇒ HA = CE.  Из CHAA-= GCCE-,  получаем AC ∥HE  GH = GE.  Следовательно, FG − серединный перпендикуляр к HE,  а значит, проходит через середниу отрезка HE.

PIC

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!