Прямоугольники
Ошибка.
Попробуйте повторить позже
В прямоугольнике биссектрисы угла и внешнего угла пересекают сторону и прямую в точках и соответственно. Докажите, что отрезок перпендикулярен отрезку диагонали прямоугольника.
Подсказка 1
В этой задаче попробуем использовать такой трюк - докажем, что К - точка пересечения двух высот треугольника BDM. Тогда из этого будет следовать, что МК - третья высота, перпендикулярная BD.
Подсказка 2
Для этого нам потребуется доказать, что BK и DA это высоты! Заметим, что DA очевидно является высотой, ведь это сторона прямоугольника. Осталось разобраться с ВК!
Рассмотрим треугольник В нем является высотой, так как
Докажем, что По условию — биссектриса внешнего угла прямоугольника, значит, Также — биссектриса угла прямоугольника, значит,
По сумме углов треугольника имеем
Пусть — точка пересечения прямых и Тогда по сумме углов треугольника имеем
Тогда и — высоты треугольника пересекающиеся в точке Значит, — третья высота этого треугольника, то есть
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!