Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90904

Окружность, вписанная в угол с вершиной O,  касается его сторон в точках A  и B,K  — произвольная точка на меньшей из двух дуг AB  этой окружности. На прямой OB  взята точка L  такая, что прямые OA  и KL  параллельны. Пусть M  — точка пересечения окружности ω,  описанной около треугольника KLB,  с прямой AK,  отличная от K.  Докажите, что прямая OM  касается окружности ω.

Подсказки к задаче

Подсказка 1

В задаче есть какие-то углы. Никогда не бывает лишним поотмечать уголочки. Можно заметить вписанность, коллинеарность, подобие. Найдите что-нибудь из этого в этой задаче.

Подсказка 2

Оказывается, что можно понять многое счетом углов. Докажите, что ABMO - вписанный, BKM - равнобедренный. Поймите, как перейти от равнобедренности к касанию.

Подсказка 3

Касательная в вершине равнобедренного треугольника имеет понятное направление. Тогда нужно доказывать, что OM || BK. Поймите это, посчитав углы.

Показать доказательство

Покажем, что M  лежит на окружности (OAB ).  Действительно, ∠AOB = ∠KLB = ∠KMB,  откуда имеем требуемое.

PIC

Докажем, что KM = MB.  Пусть D  — точка, диаметрально противоположная точке O  в окружности (AOB ).  Тогда ∠BDA  =180∘− ∠AOB.  Тогда, поскольку D — центр описанной окружности (KLB )

∠AKB  =180∘− ∠BDA-= 90+ ∠AOB-
               2          2

следовательно, ∠MKB  = 90− ∠AOB-=∠OAB.
             2  Кроме этого, ∠AOB  =∠AMB  в силу вписанности четырехугольника AOMB.  Таким образом, треугольник KMB  подобен треугольнику AOB,  следовательно, является равнобедренным.

Наконец, MO  — биссектриса внешнего угла AMB,  поскольку O  — центр дуги AB  окружности AMB,  следовательно, KB || OM,  то есть, поскольку M  — середина дуги KB  окружности ω,  прямая OM  касается ω.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!