Касание с окружностью и касание окружностей
Ошибка.
Попробуйте повторить позже
Дан остроугольный треугольник в котором
Пусть
и
— середины сторон
и
соответственно, а
— основание высоты, опущенной из вершины
Вписанная окружность касается стороны
в точке
Прямая, проходящая через
и параллельная
пересекает отрезок
в точке
Докажите, что в четырехугольник
можно вписать
окружность.
Источники:
Первое решение. Совершим гомотетию с центром и коэффициентом
При этой гомотетии точки
и
переходят в
и
соответственно; пусть точки
и
переходят соответственно в
и
Тогда достаточно доказать, что четырёхугольник
описан. Мы докажем, что он описан около вписанной окружности
треугольника
Три стороны четырёхугольника уже касаются
поэтому достаточно доказать, что её касается
Пусть — центр
Тогда
поэтому
и
симметричны относительно
Далее заметим, что
Но — медиана в прямоугольном треугольнике
поэтому
Значит,
Значит, и прямые
и
также симметричны относительно
поскольку одна из них касается
то и другая тоже. Это и требовалось
доказать.
_________________________________________________________________________________________________________________________________________________________________________________
Замечание. У решения выше есть несколько вариантов. Например, похожими рассуждениями можно показать, что в четырёхугольнике
биссектрисы трёх углов
и
проходят через одну точку — середину отрезка
Отсюда следует, что эта середина —
центр искомой вписанной окружности.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение. Пусть прямая пересекает прямую
в точке
Как и в решении выше, получаем, что
откуда
Мы докажем, что окружности, вписанные в треугольники и
совпадают (тогда это и будет вписанная окружность
четырёхугольника
). Поскольку обе окружности вписаны в угол
для этого достаточно показать, что они касаются
прямой
в одной и той же точке. Как известно, расстояния от
до точек касания этих окружностей с
равны
соответственно
Значит, нам надо доказать, что
или что
Обозначим полупериметр треугольника через
и пусть
Имеем
С другой стороны,
откуда и следует искомое равенство.
_________________________________________________________________________________________________________________________________________________________________________________
Замечание. Во втором абзаце решения по сути доказан следующий известный признак: четырёхугольник описан тогда и
только тогда, когда
(где
и
— точки пересечения продолжений боковых сторон, расположенные как на
рисунке).
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!