Тема . Окружности

Касание с окружностью и касание окружностей

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#69400

Дан прямоугольный треугольник KLM  с прямым углом M.  На его катете LM  длины 52 как на диаметре построена окружность ω.  Из точки K  к этой окружности проведена касательная KD,  отличная от KM.  Перпендикуляр DH,  опущенный на отрезок LM,  пересекает отрезок KL  в точке E.  Найдите площадь треугольника LDE,  если известно, что LH :MH  =4 :9.

Источники: Бельчонок-2023, 11.2 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

PIC

Пусть O  — центр окружности ω.  Заметим, что

                                                 ∘ ---------
LH =-4LM  =16, MH  = 36,  OH = 1LM − LH = 10, DH =  OD2 − OH2 = 24
    13                        2

Прямоугольные треугольники LHD  и OMK  подобны, поскольку

∠MLD = 1∠MOD  = 1(180∘ − ∠MKD )= 90∘ − ∠MKO = ∠MOK
       2        2

Тогда

KM--  1 KM--  1  DH-  3
LM  = 2 ⋅OM = 2 ⋅LH = 4

Из подобия треугольников LHE  и LMK  мы получаем

     3
EH = 4LH = 12

Поэтому

       1          1                1
SLDE = 2 ⋅DE ⋅LH = 2 ⋅(DH − EH )⋅LH = 2 ⋅12⋅16 =96
Ответ: 96

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!