Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67131

В треугольнике ABC  AH
  1  и BH
   2  — высоты; касательная к описанной окружности в точке A  пересекает BC  в точке S ,
 1  а касательная в точке B  пересекает AC  в точке S2;T1  и T2  — середины отрезков AS1  и BS2.  Докажите, что T1T2,AB  и H1H2  пересекаются в одной точке.

Подсказки к задаче

Подсказка 1

Нас просят доказать, что какие-то прямые пересекаются в одной точке) Причём две из этих прямых связаны с каким-то вписанным четырехугольником(который несложно найти на картинке)! На какой геометрический объект(или явление), связанный с окружностями(или вписанным четырехугольником) намекают нам три пересекающиеся прямые?

Подсказка 2

На радикальный центр! Попробуем найти окружности, для которых удобные нам прямые AB и H₁H₂ являются радикальными осями. Как можно связать T₁T₂ с этими окружностями?

Подсказка 3

AB - радикальная ось окружностей (ABC) и (ABH₁H₂). H₁H₂ - радикальная ось окружностей (ABH₁H₂) и окружности Эйлера. Тогда попробуем доказать, что T₁T₂ - радикальная ось окружности (ABC) и окружности Эйлера. Условие у нас симметрично для точек T₁ и T₂, поэтому можно доказать лишь для одной из них, что она находится на нужной нам радикальной оси. Какими условиями мы еще не пользовались?

Подсказка 4

Мы не пользовались касанием T₁A и окружности (ABC), а также тем, что T₁ - середина S₁A. Не совсем понятно, как связать окружность Эйлера с T₁ без каких-то дополнительных точек. Какие точки на окружности Эйлера можно использовать?

Подсказка 5

Точка T₁ - это середина отрезка, так что отметим B₀ и C₀, которые лежат на окружности Эйлера и докажем, что степень точки T₁ относительно окружностей (ABC) и окружности Эйлера одинакова. Посчитать степень точки T₁ относительно (ABC) не составит труда(в силу касания), а относительно окружности Эйлера она равна T₁B₀*T₁C₀. Осталось лишь доказать равенство (T₁A)² = T₁B₀*T₁C₀!

Показать доказательство

PIC

Очевидно, что точка T1  лежит на средней линии B0C0  треугольника ABC,  а прямая T1A  касается окружности (AB0C0).  Значит, T1A2 = T1B0⋅T1C0.  Но точки B0  и C0  лежат на окружности Эйлера треугольника ABC,  следовательно, T1  лежит на радикальной оси этой окружности и описанной окружности треугольника. Проведя аналогичное рассуждение для точки T2,  получаем, что T1T2  — радикальная ось описанной окружности и окружности Эйлера. Поскольку точки A,B,H1,H2  лежат на одной окружности, прямые AB  и H1H2  являются радикальными осями этой окружности с описанной окружностью и окружностью Эйлера соответственно. Как известно, что три радикальные оси пересекаются в одной точке (радикальном центре).

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!