Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71256

Через две из точек касания общих внешних касательных с двумя окружностями проведена прямая (две точки взяты на двух разных окружностях). Докажите, что окружности высекают на ней равные хорды.

Подсказки к задаче

Подсказка 1

Давайте посмотрим на картинку. Если мы уже знаем степень точки, то относительно каких точек и каких окружностей, которые уже есть на картинке, эту степень можно было бы написать?

Подсказка 2

Верно, относительно точек, которые были задают прямую из условия, и относительно окружностей, которые не содержат каждую из точек. Попробуйте расписать эту степень, чтобы получилось два равенства. Что тогда можно сказать?

Подсказка 3

С одной стороны, каждая из степеней равна квадрату отрезка, который соединяет «не противоположные» точки касания. С другой стороны, на каждой из общих внешних касательных этот отрезок равен. В таком случае, мы получили, что произведение отрезка из условия и произведения этого же отрезка без первой хорды из условия, и произведение отрезка из условия на произведение этого же отрезка без второй хорды из условия, равны. Значит, получили требуемое!

Показать доказательство

Пусть общие касательные касаются окружностей в точках A,B,K,K′ как на рисунке:

PIC

Тогда

AK2 =AF ⋅AB

BK ′2 =BE ⋅BA

При этом легко понять, что AK = BK′ (AKBK  ′ — трапеция или параллелограмм)

Поэтому AF = BE,  а значит, AE = BF.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!