Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79120

На отрезке AB  выбрали точку M.  На отрезках AM  и BM  в одну и ту же сторону построены равносторонние треугольники AMC  и BMD.  Их описанные окружности пересекаются по прямой MN.  Докажите, что вне зависимости от выбора точки M  прямая MN  всегда проходит через какую-то фиксированную точку.

Показать доказательство

PIC

Проведём в точках A  и B  прямые, которые образуют с прямой AB  угол 60∘ как показано на рисунке.

Во-первых, покажем, что они касаются окружностей AMC  и BMD.  Пусть O  — центр окружности BMD.  Тогда угол MOB  равен 120∘ как центральный, а угол OBM  30∘.  Значит, ∠OBX = ∠OBM  +∠MBX  = 90∘.  Аналогично AX  касается окружности AMC.

Во-вторых, заметим, что треугольник ABX  — равносторонний, то есть степень точки X  равна относительно обеих окржностей. Значит, она лежит на их радоси — прямой MN.  Осталось заметить, что точка X  не зависит от выбора точки M.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!