Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90450

Окружность с центром в точке O  проходит через вершины B  и C  треугольника ABC  и вторично пересекает стороны AB  и AC  в точках P  и Q  соответственно. Предположим, что окружности с диаметрами BP  и CQ  касаются друг друга внешним образом в точке T  . Найдите длину отрезка AO  , если AB = 18,AC =36  и AT = 12.

Источники: Турнир Ломоносова - 2024, 11.3 (см. turlom.olimpiada.ru)

Подсказки к задаче

Подсказка 1

Пока точка A не очень связана со всей остальной картинкой. Попробуйте выражать степень точки A относительно всех трёх окружностей.

Подсказка 2

Отлично! Мы получили, что степень точки A относительно окружности с диаметрами BP равна степени точки A относительно окружности с диаметрами CQ. А также мы знаем, что T - точка касания этих же окружностей. Что тогда можно сказать про прямую AT?

Подсказка 3

Верно! Это же радикальная ось этих окружностей, а значит, и касательная. Теперь с помощью теоремы об отрезках секущей и касательной мы можем найти отрезки AP и AQ. Однако мы ещё никак не использовали свойства точки O. Попробуйте отметить центры двух других окружностей (точки Y и X) и рассмотреть четырёхугольник AXOY.

Подсказка 4

Мы получаем, что он вписанный. А значит, углы AYX и AOX равны. Теперь мы можем выразить AO через AX и угол AYX. Осталось лишь найти этот угол. В треугольнике AYX мы уже знаем 2 стороны, и если найдём третью, то и любой его элемент сможем посчитать, а значит и угол AYX. Попробуйте найти XY, воспользовавшись тем, что T — точка касания.

Показать ответ и решение

Заметим, что AP ⋅AB = AQ ⋅AC  (степень точки A  относительно окружности (P BC)  ). Но также величина AP ⋅AB  является степенью точки A  относительно окружности с диаметром BP  , а величина AQ ⋅AC  — степенью точки A  относительно окружности с диаметром QC  . И эти величины равны, а значит точка A  лежит на радикальной оси этих окружностей. Также на ней лежит точка T  , потому что это их общая точка. Но у касающихся окружностей радикальной осью является их общая касательная. Стало быть, AT  — их общая касательная.

Отметим точки X  и Y  — середины отрезков QC  и PB  .

PIC

Из равенств AT2 =AP ⋅AB  и AT2 = AQ ⋅AC  находим AP = 8,AQ =4,QX = XC = 16,PY = YB =5  . В силу касания Y T ⊥ AT,XT ⊥ AT  , то есть точки Y,T,X  коллинеарны. Следовательно, XY = YT + XT =5+ 16= 21  .

Заметим, что OX ⊥ OC  и OY ⊥ BP  , потому что O  — центр окружности (PBC )  . Таким образом, четырёхугольник AY OX  вписанный, а отрезок AO  — диаметр опиcанной окружности треугольника AXY  . С одной стороны, по формуле Герона площадь треугольника равна 126  . С другой стороны, она равна AY⋅YX-⋅AX-
  2AO  , откуда вычисляем AO = 65-
     3  .

Ответ:

 65
 3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!