Тема . Счётная планиметрия

Четырёхугольники в окружности, счёт отрезков и углов, теорема Птолемея

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90135

Середины сторон выпуклого четырёхугольника ABCD  лежат на окружности. Известно, что AB = 1,BC = 4,CD =8  . Найдите AD  .

Источники: ДВИ - 2022, вариант 221, задача 5 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Попробуем найти еще какие-то хорошие свойства у внутреннего четырехугольника? Какими являются его стороны?(попарно противоположные)

Подсказка 2

Внутренний четырёхугольник является параллелограммом! Так он еще и вписан….кто же он тогда?

Подсказка 3

Внутренний четырехугольник является прямоугольником! Что тогда можно сказать про диагонали большего четырехугольника?

Подсказка 4

Диагонали большего четырехугольника перпендикулярны! Чем тогда можно воспользоваться при вычислении сторон большего четырехугольника?

Подсказка 5

Можно воспользоваться теоремой Пифагора для четырех треугольников, на которые разбился больший четырехугольник!

Показать ответ и решение

Четырёхугольник EFGH  является параллелограммом, поскольку стороны попарно параллельны диагоналям ABCD  , но раз он вписан, то также является прямоугольником, то есть диагонали ABCD  перпендикулярны.

PIC

Пусть AC∩ BD = I  , отсюда AI2 +BI2 = 1,BI2+ CI2 = 16  и CI2 +DI2 =64  , тогда

AI2+ DI2 = AD2 =1+ 64− 16=49

AD =7
Ответ: 7

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!