Тема . Дополнительные построения в планике

Удвоение

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дополнительные построения в планике
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#86299

В треугольнике ABC  точка M  — середина стороны AC.  На стороне BC  взяли точку K  так, что угол BMK  прямой. Оказалось, что BK = AB.  Найдите ∠BKM,  если           ∘
∠A +∠C = 70.

Показать ответ и решение

Удвоим медиану. В силу параллельности ∠BAC  =∠ACX,  а значит BCX  = 70∘.  Заметим, что ΔBKX  — равнобедренный, тогда KX  =KB  =BA = CX,  следовательно ΔCKX  — равнобедренный. Таким образом, имеем:  ∘
70 =∠XCK  = ∠XKC,  откуда           ∘
∠BKX  = 110 ,  а значит          ∘
∠BKM  = 55.

PIC

Ответ:

 55∘

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!