Тема . Дополнительные построения в планике

Спрямление

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дополнительные построения в планике
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31364

На диагонали AC  выпуклого четырехугольника ABCD  отмечена точка E  . Известно, что ∠BAC  =∠BCA  =∠DAC  = 30∘,AC ⊥DE  u AE = 2CE  . Докажите, что AD +AE > 2BD  .

Показать ответ и решение

Отметим на отрезке AC  точки X  и Y  так, что ∠ABX = ∠CBY = 30∘.

PIC

Тогда AX =XB,  CY = YB  и                 ∘
∠BXY = ∠BY X =60 .  Следовательно, треугольник XBY  правильный, и тогда AX = XY = YC = BX = BY.  Так как AE = 2CE,  это означает, что точка Y  совпадает с E,  и потому AE = 2EB.  Кроме того, AD = 2DE,  как гипотенуза и меньший катет прямоугольного треугольника с углом   ∘
60 .  Итак, AD +AE = 2(DE + EB )>2BD,  что и требовалось.

Ответ:

что и требовалось доказать

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!