Центральная симметрия
Ошибка.
Попробуйте повторить позже
Дан выпуклый четырехугольник Описанная окружность треугольника
пересекает стороны
и
в точках
и
соответственно. Описанная окружность треугольника
пересекает стороны
и
в точках
и
соответственно.
Оказалось, что четырехугольник
— параллелограмм. Докажите, что и четырехугольник
— параллелограмм.
Заметим, что по свойствам вписанных углов, откуда
Аналогично,
Следовательно,
симметрия относительно точки пересечения диагоналей параллелограмма
переводит треугольник
в треугольник
, в
частности,
отображается в
. Тогда точка пересечения прямых
и
переходит в точку пересечения симметричных им прямых
и
т. е.
переходит в
Таким образом, четырехугольник
симметричен относительно той же точки, и значит,
является параллелограммом.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!