Тема . Преобразования плоскости

Центральная симметрия

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела преобразования плоскости
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91862

В выпуклом четырёхугольнике ABCD  углы A  и C  — тупые. На сторонах AB  , BC  , CD  и DA  отмечены точки K  , L  , M  и N  соответственно. Докажите, что периметр четырёхугольника KLMN  больше удвоенной длины диагонали AC  .

Показать доказательство

Начертим четырёхугольник CD A B ,
  1 1 1  симметричный четырёхугольнику CDAB  относительно точки C  и отметим соответствующие точки M1,N1  и K1.  Заметим, что LM > LM1,  так как ∠BCD  — тупой по условию, а C  - середина отрезка MM1,  то есть L  находится в той же полуплоскости относительно серединного перпендикуляра к MM1,  что и точка M1.  Также заметим, что так как CD1A1B1  симметричен CDAB  относительно точки C,  то MN = M1N1.  Далее продлим B1A1  на свою длину — точка B2.  Отметим на A1B2  точку K2  так, что AK = A1K1 =A1K2.

PIC

Аналогично отрезкам LM > LM1,  можем получить, что N1K2 >N1K1 = KN  (так как ∠B1A1D1 = ∠BAD  - тупой по условию). Так как A1K2 = AK  и AK ||A1K2,  KK2 = AA1 =2AC  (AKK2A1  — параллелограмм). Таким образом, для пятиугольника KLM1N1K2  можем выписать неравенство:

KL + LM1 +M1N1 + N1K2 > KK2 = 2AC,

Так как LM1 > LM,M1N1 = MN, N1K2 > NK,  получаем, что:

PKLMN  = KL +LM + MN  +NK  >KL + LM1 +M1N1 + N1K2 > KK2 = 2AC.

Значит, PKLMN > 2AC.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!