Центральная симметрия
Ошибка.
Попробуйте повторить позже
Доказать, что четыре перпендикуляра, опущенных из середин сторон произвольного вписанного четырёхугольника на его противоположные стороны, пересекаются в одной точке.
Источники:
Обозначим вершины произвольного вписанного в окружность четырёхугольника за и
центр окружности за
середины
сторон
и
за
и
соответственно.
Отрезки и
являются серединными перпендикулярами к сторонам
и
поэтому они параллельны перпендикулярам
и
опущенным на эти стороны из середин противоположных сторон четырёхугольника. Обозначим точку пересечения
этих перпендикуляров за
из параллельности отрезков
и
а также
и
следует, что четырёхугольник
является параллелограммом. Следовательно, его диагонали
и
пересекаются в точке
делящей их
пополам. Диагональ
при этом является средней линией четырёхугольника
поэтому точка
пересечения
перпендикуляров
и
опущенных из середин сторон
и
на противоположные стороны четырёхугольника,
симметрична центру
описанной окружности относительно середины
отрезка
соединяющего середины сторон
и
Аналогично доказывается, что точка пересечения перпендикуляров, опущенных из середин сторон
и
на противоположные
стороны четырёхугольника, симметрична центру О описанной окружности относительно середины отрезка
соединяющего середины
сторон
и
Четырёхугольник
образованный серединами сторон произвольного четырёхугольника
образуют параллелограмм (Вариньона), стороны которого параллельны диагоналям
и
и равны их половинам.
Следовательно, отрезки и
являющиеся диагоналями параллелограмма
делятся точкой их пересечения
пополам, поэтому их середины совпадают. Значит, совпадают и точки
и
симметричные центру
относительно этих
середин.
Таким образом, все четыре перпендикуляра, опущенных из середин сторон вписанного четырёхугольника пересекаются в точке
, симметричной центру
описанной окружности относительно точки пересечения средних линий
и
этого
четырёхугольника.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!