Осевая симметрия
Ошибка.
Попробуйте повторить позже
Будем называть треугольник вписанным в треугольник , если точки , , находятся на сторонах , , соответственно.
1. Докажите, что если отрезок параллелен отрезку , то описанные окружности треугольников и пересекаются на прямой .
2. Оказалось, что , . Докажите, что точка, симметричная относительно , лежит на пересечении описанных окружностей треугольников и .
Пункт 1, подсказка 1
Пусть G — вторая точка пересечения описанных окружностей △AEF и △ABD. Тогда чтобы показать, что G, E и D лежат на одной прямой, можно, например, показать равенство ∠AGE и∠AGD. Ведь нам дан факт про параллельность, которая как раз связана с углами.
Пункт 2, подсказка 1
Показать, что точка лежит на пересечении двух окружностей можно, если показать принадлежность данной точки к обоим окружностям по отдельности.
Пункт 2, подсказка 2
Принадлежность к описанной окружности △ABD. Теперь стоит воспользоваться, что равнобедренные треугольники дают ещё достаточно равных отрезков, а также равные отрезки есть из симметричность. Тогда что можно сказать о окружности с центром в E и радиусом EB? Аналогично для точки F. Но как же воспользоваться этим фактом? Углы AED’ и AFD’ центральные, какие же равенства для них можно составить?
1. Пусть — вторая точка пересечения описанных окружностей и . Поскольку четырехугольник описанный, то . Четырехугольник также описанный, значит .
Поскольку , то .
Получаем, что . Тогда , , лежат на одной прямой.
2. Поскольку треугольники и равнобедренные, то и . Тогда
Также из определения (точка, симметричная относительно ) следует, что
Получается, что лежит на описанной окружности .
Из определения как симметричной точки:
Значит, и лежат на одной окружности с центром в а и с центром в Тогда выполнены следующие равенства для вписанных и центральных углов:
Получаем, что лежит и на описанной окружности .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!