Поворот
Ошибка.
Попробуйте повторить позже
В равнобедренном треугольнике с основанием и углом
при вершине
на стороне
отмечена точка
такая, что
угол
Доказать
Источники:
Подсказка 1
А давайте попробуем просто всё посчитать. :)
Подсказка 2
Начнём с углов. Особенно интересны нам ∠BAC, ∠BHC и ∠BCH.
Подсказка 3
Попробуйте применить теорему синусов к треугольнику ABC.
Подсказка 4
А если вновь применить теорему синусов, но уже к треугольнику HBC?
Первое решение
Построим серединный перпендикуляр к отрезку обозначим за
и
точки его пересечения со сторонами
и
соответственно.
Треугольник — равнобедренный с углами
при основании
поэтому отрезки
и
равны
как его боковые стороны.
В треугольнике
Кроме того,
Следовательно, треугольник — равнобедренный с боковыми сторонами
и
Получаем, что
Теперь
посмотрим на равнобедренный треугольник
с
Следовательно,
Заметим, что
Тогда — биссектриса угла
Треугольники и
равны по общей стороне
и по 2 углам
Тогда
Получаем, что
______________________________________________________________________________________________________________________________________________________
Второе решение
Повернём треугольник вокруг точки
по часовой стрелке на
чтобы сторона
совместилась со стороной
Образ
точки
при этом повороте обозначим за
Затем зеркально отразим треугольник
относительно стороны
образ точки
при этом отражении обозначим за
Тогда четырехугольник является прямоугольником и
В треугольнике по построению
а также
Следовательно, треугольник — равнобедренный с углом
при вершине, а значит, он является равносторонним.
Тогда
______________________________________________________________________________________________________________________________________________________
Третье решение
По теореме синусов для треугольника
По теореме синусов для треугольника
Тогда
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!