Поворот
Ошибка.
Попробуйте повторить позже
На сторонах и
квадрата
выбраны точки
и
таким образом, что угол
равен
Длина стороны квадрата
равна 1. Найдите периметр треугольника
Источники:
Первое решение.
Вспомним, что угол, под которым видна сторона треугольника из центра вневписанной окружности, равен где
— угол, в
который окружность вневписана.
Центр вневписанной окружности треугольника лежит на прямой
т.к. биссектриса совпадает с диагональю квадрата
Но
при этом
то есть точка как раз является центром вневписанной окружности треугольника
Тогда точки и
— точки касания вневписанной окружности с продолжениями сторон треугольника
а его периметр равен
Второе решение.
Если отразить точку относительно прямой
а затем относительно прямой
то она перейдет в точку
Действительно
композиция двух осевых симметрий относительно пересекающихся прямых — это поворот на удвоенный угол между прямыми. То есть в
нашем случае эти две симметрии эквивалентны повороту на угол
относительно точки
Это означает, что образ точки
при
симметрии относительно
и образ точки
при симметрии относительно
— это одна и та же точка; на рисунке она обозначена
Из точки отрезки
и
видны под углом
(при симметрии сохраняются величины углов, поэтому например, углы
и
равны). Значит, точка
— это основание перпендикуляра, опущенного из точки
на прямую
И, наконец, поскольку
и
(при симметрии длины отрезков сохраняются), видим, что периметр треугольника
равен сумме длин сторон
и
квадрата.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!