Поворот
Ошибка.
Попробуйте повторить позже
На сторонах и квадрата выбраны точки и таким образом, что угол равен Длина стороны квадрата равна 1. Найдите периметр треугольника
Источники:
Подсказка 1
Что нам вообще дали в задаче? Сторону квадрата и угол в 45 градусов. Скудный набор. Но при этом чуть-чуть про периметр нам известно, что это часть у двух сторон квадрата. Какая возможная есть гипотеза про вероятный периметр треугольника?
Подсказка 2
Ага, у нас треугольник расположен в углу и, если "развернуть" его гипотенузу, то периметр будет равен сумме двух сторон квадрата. Теперь это надо доказать. Попробуем сделать такую хитрую штуку. Что произойдёт, если точку D сначала отразить относительно AF, а потом относительно AE? Куда перейдёт точка D?
Подсказка 3
Верно, точка D перейдёт в точку B! Это будет так, потому что композиция двух осевых симметрий относительно пересекающихся прямых — это поворот на удвоенный угол между прямыми. Получается, что у нас точки B и D при отражении относительно сторон являются одной точкой X на EF. Но чем на самом деле является точка X в треугольнике AEF?
Подсказка 4
Да, это основание высоты из точки A. Это вытекает из свойств симметрии. Осталось только аналогично понять равенство отрезков, и мы добились своей цели. Победа!
Первое решение.
Вспомним, что угол, под которым видна сторона треугольника из центра вневписанной окружности, равен где — угол, в который окружность вневписана.
Центр вневписанной окружности треугольника лежит на прямой т.к. биссектриса совпадает с диагональю квадрата Но при этом
то есть точка как раз является центром вневписанной окружности треугольника
Тогда точки и — точки касания вневписанной окружности с продолжениями сторон треугольника а его периметр равен
Второе решение.
Если отразить точку относительно прямой а затем относительно прямой то она перейдет в точку Действительно композиция двух осевых симметрий относительно пересекающихся прямых — это поворот на удвоенный угол между прямыми. То есть в нашем случае эти две симметрии эквивалентны повороту на угол относительно точки Это означает, что образ точки при симметрии относительно и образ точки при симметрии относительно — это одна и та же точка; на рисунке она обозначена
Из точки отрезки и видны под углом (при симметрии сохраняются величины углов, поэтому например, углы и равны). Значит, точка — это основание перпендикуляра, опущенного из точки на прямую И, наконец, поскольку и (при симметрии длины отрезков сохраняются), видим, что периметр треугольника равен сумме длин сторон и квадрата.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!