Тема . Преобразования плоскости

Инверсия

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела преобразования плоскости
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83389

Будем называть треугольник DEF  вписанным в треугольник ABC  , если точки D  , E  , F  находятся на сторонах BC  , AC  , AB  соответственно.

1. Докажите, что если отрезок EF  параллелен отрезку BC  , то описанные окружности треугольников AEF  и ABD  пересекаются на прямой DE  .

2. Оказалось, что CE = DE  , BF =DF  . Докажите, что точка, симметричная D  относительно EF  , лежит на пересечении описанных окружностей треугольников ABC  и AEF  .

3. Пусть ∠BAC  =∠DEF  = ∠DFE  . Средняя линия треугольника DEF  , параллельная EF  , пересекает AB  и AC  в точках X  и     Y  соответственно. Докажите, что точка A  , D  , X  , Y  лежат на одной окружности.

4. В треугольник DEF  вписан треугольник XY Z  , гомотетичный треугольнику ABC  . Докажите, что описанная окружность треугольника DEF  касается описанной окружности ABC  тогда и только тогда, когда касается описанной окружности XY Z  .

Подсказки к задаче

Пункт 1, подсказка 1

Пусть G — вторая точка пересечения описанных окружностей △AEF и △ABD. Тогда чтобы показать, что G, E и D лежат на одной прямой, можно, например, показать равенство ∠AGE и∠AGD. Ведь нам дан факт про параллельность, которая как раз связана с углами.

Пункт 2, подсказка 1

Показать, что точка лежит на пересечении двух окружностей можно, если показать принадлежность данной точки к обоим окружностям по отдельности.

Пункт 2, подсказка 2

Принадлежность к описанной окружности △ABD. Теперь стоит воспользоваться, что равнобедренные треугольники дают ещё достаточно равных отрезков, а также равные отрезки есть из симметричность. Тогда что можно сказать о окружности с центром в E и радиусом EB? Аналогично для точки F. Но как же воспользоваться этим фактом? Углы AED’ и AFD’ центральные, какие же равенства для них можно составить?

Пункт 3, подсказка 1

Что же даёт равенство углов в условии? Чем будут DF и DE для описанной окружности △AFE?

Пункт 3, подсказка 2

Конечно, XY — радикальная ось. Тогда можно посчитать степени точек для X и для Y. Из равенства для X, что можно сказать о 😆 и окружности, описанной около △AFD? 😆 — касается данной окружности, отсюда можно получить равенство для углов. Останется проделать аналогичные рассуждения для Y и проверить, чему равна сумма противолежащих углов XAYD.

Пункт 4, подсказка 1

Окружность описанная около △DEF повторно пересекает стороны BC, AC, AB в точках D', E', F' соответственно. Окружность △XYZ повторно пересекает стороны EF, DF, DE в точках X', Y', Z' соответственно. Что можно сказать о пересечение описанных окружностей △EX'Z', △FX'Y' и △DY'Z'. Они пересекаются в одной точки, пусть М. Выясните, каким ещё окружностям принадлежит точка М?

Пункт 4, подсказка 2

Очень много окружностей пересекающихся в М. Давайте сделаем инверсию φ в этой точке с произвольным радиусом. Какие подобные треугольнике теперь можно увидеть? Например, △AE'F' ~ △φ(X') φ(E) φ(F). Какие ещё два аналогичных подобия можно получить?

Показать ответ и решение

1. Пусть G  — вторая точка пересечения описанных окружностей AEF  и ABD  . Поскольку четырехугольник AFEG  описанный, то ∠AF E =  = 180∘− ∠AGE  . Четырехугольник ABDE  также описанный, значит ∠ABD = 180∘− ∠AGD  .

PIC

Поскольку EF ∥BC  , то ∠AF E = ∠ABD  .

Получаем, что ∠AGE = ∠AGD  . Тогда G  , E  , D  лежат на одной прямой.

2. Поскольку треугольники BED  и DFC  равнобедренные, то ∠EBD  =∠EDB  и ∠FCD = ∠FDC  . Тогда

∠EDF = 180∘− ∠BDE − ∠FDC  =180∘− ∠B − ∠C =∠BAC

Также из определения D′ (точка, симметричная D  относительно EF  ) следует, что

   ′
∠ED F =∠EDF  =∠BAC

Получается, что D ′ лежит на описанной окружности AEF  .

PIC

Из определения  ′
D как симметричной точки:

ED = ED′ = EB и D′F = FD = FC

Значит, B,D  и D′ лежат на одной окружности с центром в E,  а C,D  и D ′ с центром в F.  Тогда выполнены следующие равенства для вписанных и центральных углов:

     ′      ′      ′         ′
∠EBD  =∠AED  ∕2∠AFD ∕2= ∠ACD

Получаем, что D′ лежит и на описанной окружности ABC  .

3. Обозначим за S  и T  середины DF  и DE  соответственно. Т.к. ∠SFE = ∠FAE = ∠FET  , то SF  и TE  — касательные к окружности, описанной около AF E  .

PIC

Рассмотрим пару окружностей: описанная окружность треугольника AFE  и окружность нулевого радиуса с центром в точке D  . Рассмотрим степени точек S  и T  относительно данных окружностей:

pow    (S)= SF2 = SD2 =pow (S)
   (AFE )                 D

pow    (T)= TE2 = TD2 = pow (T)
   (AFE)                  D

Получаем, что ST  — радикальная ось наших 2 окружностей. Тогда на этой же радикальной оси лежат X  и Y  . Тогда XA ⋅XF = XD2  и YA⋅Y E = YD2.  Следовательно, XD  — касательная к описанной окружности AFD  , и YD  — касательная к описанной окружности AFD  . Тогда

∠XAD = ∠XDF, ∠YAD = ∠YDE

∠XDF + ∠YDE  =∠BAC

                               ∘                  ∘
∠XDY + ∠XAY  =∠XAY  +∠XAY  +180 − ∠DFE − ∠DEF = 180

В итоге XAY D  — вписанный.

4. Окружность (DEF )  повторно пересекает стороны BC  , AC  , AB  в точках  ′
D ,  ′
E ,   ′
F соответственно. Окружность (XY Z)  повторно пересекает стороны EF  , DF  , DE  в точках   ′
X ,  ′
Y ,  ′
Z соответственно.

Окружности     ′ ′
(EX Z )  и    ′ ′
(F X Y)  повторно пересекаются в точке M  . Заметим, что

∠Y′MZ ′ = ∠DEF + ∠DFE = π− ∠EDF,

поэтому M  лежит на окружности     ′′
(DY Z )  . Также

∠EMF  = ∠FMX ′+ ∠EMX  ′= ∠F Y′X ′+∠EZ ′X ′ =∠F XY + ∠EXZ = π− ∠A,

поэтому M  лежит на окружности (AEF )  . Аналогично M  лежит на окружностях (BFD)  , (CED )  .

Пусть Φ  — инверсия с центром в точке M  и произвольным радиусом. Тогда

pict

Также

∠ Φ(X ′)Φ(E)Φ(F )=∠F MX ′ = ∠FY′X′ = ∠FXY = ∠AF E = ∠AE ′F ′.

Аналогично ∠Φ(X′)Φ (F)Φ(E)= ∠AF′E′ . Следовательно, треугольники AE ′F ′ и Φ(X ′)Φ(E )Φ (F)  подобны. Проделывая аналогичные рассуждения для двух других сторон мы получаем

△ABC ∪ △D ′E ′F′ ∼ △Φ (X ′)Φ(Y′)Φ(Z′)∪△Φ (D )Φ(E)Φ(F).

Следовательно, угол между окружностями     ′ ′ ′
Φ((X Y Z))  и Φ((DEF ))  равен углу между окружностями (ABC )  и (DEF )  по подобию, с другой стороны, равен углу между окружностями   ′ ′′
(X Y Z )  и (DEF )  , поскольку инверсия сохраняет углы.

Ответ:

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!