Инверсия
Ошибка.
Попробуйте повторить позже
Две окружности касаются внутренним образом в точке . В большей окружности
проведена хорда
, касающаяся меньшей окружности в точке
. Найдите
если
и
Источники:
Покажем, что является биссектрисой угла
(это утверждение
называется леммой Архимеда и при правильной формулировке может быть
использовано на олимпиаде без доказательства). Тогда по свойству биссектрисы
получим
______________________________________________________________________________________________________
Способ 1. Пусть общая касательная к окружностям пересекает прямую в
точке
. Пусть
Отрезки
и
равны как отрезки
касательных, проведенных из точки
к меньшей окружности, следоваетельно,
.
По теореме об угле между касательной и хордой верно, что
. Наконец, по теореме о внешнем угле в треугольнике
,
.
_______________________________________________________________________________________________________
Способ 2. Рассмотрим гомотетию с центром в точке , переводящую
меньшую окружность в большую. Пусть прямая
пересекает большую
окружность в точке
, тогда прямая
под действием гомотетии переходит в
касательную к большей окружности, проведенную в точке
. Таким образом,
данная касательная паралельна
, то есть
является серединой меньшей
дуги
большей окружности.
_______________________________________________________________________________________________________
Способ 3. Пусть — середина меньшей дуги окружности
большей
окружности. Рассмотрим инверсию с центром в точке
и радиусом
. Точки
и
под действием инверсии останутся на месте, следовательно, прямая
AB переходит в окружность, проходящую через точки
,
, и центр
окружности инверсии —
, то есть в большую окружность. Наконец,
меньшая окружность переходит в окружность, которая касается образа
большей окружности и образа прямой
и гомотетична своему пробразу
с центром в
, то есть остается на месте, то есть точка
перейдет
в точку
, а значит, прямая
проходит через центр инверсии —
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!