Многочлены с целыми коэффициентами и теорема Безу
Ошибка.
Попробуйте повторить позже
Пусть — многочлен с целыми коэффициентами, причем для некоторого целого числа числа и делятся на Докажите, что тогда делится на для любого целого
Рассмотрим число при произвольном Среди чисел найдётся число, сравнимое с по модулю (пусть это ). Как известно, кратно Заметим, что и делится на Следовательно, также кратно трём, что и требовалось.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!