Тема . Многочлены

Многочлены с целыми коэффициентами и теорема Безу

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела многочлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76295

У многочленов P(x)  и Q (x)  один и тот же набор целых коэффициентов (их порядок различен). Докажите, что разность P (2015)− Q(2015)  кратна 1007.

Источники: Московская математическая регата, 2016

Показать доказательство

Нетрудно видеть, что P(1)=Q (1),  потому что набор коэффициентов один и тот же. Также ясно, что P(2015)≡ P(1) (mod 1007)  и Q (2015)≡ Q(1) (mod 1007),  так как 1≡ 2015 (mod 1007).  Из равенства P(1)=Q (1)  получаем, что P (2015) ≡Q (2015) (mod 1007),  что и требовалось.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!