Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела многочлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88065

Известно, что система уравнений

{  3x2+ 6y2 − x− y = 6
  −3y2+ 6xy− x +2y = 2

имеет ровно четыре решения (x1,y1),(x2,y2),(x3,y3),(x4,y4)  . Найдите сумму

x + y +x + y +x  +y + x +y
 1  1   2   2  3   3   4  4

Ответ округлите до десятых.

Источники: Межвед - 2024, 11.4 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Непонятно как искать эти решения, поэтому посмотрим под другим углом на то, что требуется найти. Пусть мы ищем сумму x и сумму y. На что тогда это похоже?

Подсказка 2

Это же теорема Виета для уравнения 4 степени! Тогда нужно из системы выразить уравнение 4 степени для x и y.

Подсказка 3

Из второго уравнения легко выражается x, который можно подставить в первое и получить уравнение 4 степени для y.

Подсказка 4

Сумму для y нашли, а как же найти сумму для x? Нам мешает y^2 в обоих уравнениях. Тогда путем умножения на константу и сложения избавимся от y^2. Тогда остается выразить y через x, подставить y и получить уравнение 4 степени для x.

Показать ответ и решение

Рассмотрим второе уравнение системы

   2
−3y +6xy− x+ 2y = 2

          2
(6y− 1)x =3y − 2y+ 2

Заметим, что y = 1
   6  не является решением, тогда

x = 3y2−-2y+-2
      6y− 1

Поставим x  в первое уравнение системы и преобразуем, получив уравнение 4-ой степени относительно y

 (3y2− 2y+2 )2      3y2− 2y +2
3 ---6y-− 1-   +6y2− --6y−-1-- − y =6

3(3y2 − 2y+ 2)2− (3y2− 2y+ 2)(6y− 1)+ (6y2− y− 6)(6y− 1)2 = 0

(27y4− 36y3+ 48y2− 24y+12)− (18y3− 15y2+ 14y − 2)+ (216y4− 108y3− 198y2+71y− 6)= 0

243y4− 162y3− 135y2+33y+ 8= 0

Заметим, что раз (x1,y1),  (x2,y2),  (x3,y3),  (x4,y4)  — решения системы, то y1,  y2,  y3,  y4  будут корнями данного уравнения, причём различными, иначе бы какие-то решения системы совпали в силу выражения x  через y.  Т.к. многочлен 4-ой степени может иметь не более 4 корней, значит, других не будет. Тогда по теореме Виета

               162   2
y1+ y2 +y3+ y4 = 243-= 3

Теперь возьмём второе уравнение системы, удвоим его и сложим с первым уравнением, получим

  2
3x − 3x +3y+ 12xy =10

(3+ 12x)y = (10+ 3x− 3x2)

Заметим, что x= − 1
     4  не является решением, тогда

y = 10+-3x-− 3x2
     3+ 12x

Подставим y  в первое уравнение системы и преобразуем, получив уравнение 4-ой степени теперь относительно x:

  2  ( 10+ 3x − 3x2)2    10+ 3x − 3x2
3x +6  --3+-12x--  − x− --3+-12x-- =6

6(10+3x − 3x2)2− (10+3x− 3x2)(3+ 12x)+ (3x2− x− 6)(3+ 12x)2 = 0

(54x4− 108x3− 306x2+ 360x+ 600)− (−36x3 +27x2+ 129x+ 30)+

+ (432x4+ 72x3− 909x2− 441x − 54)= 0

486x4− 1242x2− 210x+ 516= 0

Аналогично случаю с y  по теореме Виета

x1+x2+ x3+ x4 = 0

В итоге

                              2
x1+ y1+x2+ y2+ x3+y3+ x4+ y4 = 3 ≈ 0,7
Ответ: 0.7

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!