Корни многочленов
Ошибка.
Попробуйте повторить позже
Квадратные трёхчлены и
с действительными коэффициентами таковы, что в совокупности они имеют 4 различных
действительных корня, а также каждый из многочленов
и
имеет 4 различных действительных корня. Какое
наименьшее количество различных действительных чисел может быть среди корней многочленов
и
Источники:
Заметим, что если среди корней многочлена есть корень
скажем, число
, то
откуда
является корнем
Аналогично если среди корней
есть корень многочлена
то
является
корнем
Но одновременно
и
не могут иметь корень
т.к. иначе в совокупности у них было бы менее
корней.
Отсюда можно получить оценку общего числа различных корней. Если их не больше то у
и
есть общий корень, а
также у
и
есть общий корень, чего не может быть по вышесказанному.
Теперь построим пример, когда различных корней ровно Пусть
Тогда у корнями будут числа 0 и 3; у
корнями будут числа -1 и 2; у
корнями будут числа -1, 0, 1, 2; у
корнями будут числа -1, 1, 2, 4. Итого корни всех многочленов в совокупности: -1, 0, 1, 2, 3, 4.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!