Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела многочлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76581

Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?

Источники: Турнир городов - 2022, 11.1 (см. www.turgor.ru)

Подсказки к задаче

Подсказка 1

Нам известны 2 корня и все коэффициенты в каком-то порядке! Все корни меньше единицы, но больше 0. Что тогда можно сказать про коэффициенты и их сравнения относительно друг друга?

Подсказка 2

Да, свободный член наименьший по модулю и при этом, знаки у коэффициентов чередуются! В таком случае, что можно сказать исходя из теоремы Виета?

Подсказка 3

Верно, по теореме Виета для b и d, которые мы знаем, можно найти a! А дальше уже можно найти и оставшийся корень.

Показать ответ и решение

Пусть a,b,c,d  — коэффициенты многочлена от старшего к младшему, α,β  — известные корни, γ  — неизвестный корень. Прежде всего заметим, что так как все корни между 0 и 1, то в силу теоремы Виета коэффициент d  — наименьший из коэффициентов по абсолютной величине.

Поскольку все корни многочлена положительны, знаки коэффициентов чередуются. Поэтому, зная d,  определяем b.  Если найти  a,  то определяется и c.  Заметим, что по Виета

    −d
aγ = αβ-и b= −a(α+ β+ γ)

Поэтому можно найти a(α +β).  Так как α  и β  известны, отсюда определяется a.  А значит и третий корень γ.

Ответ: да

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!