Корни многочленов
Ошибка.
Попробуйте повторить позже
Дано натуральное число . Можно ли представить многочлен
в виде суммы двух кубов многочленов с
действительными коэффициентами?
Источники:
Предположим противное — существуют такие многочлены и
, что выполнено тождество
.
_________________________________________________________________________________________________________________________________________________________________________________
Первое решение.
У многочленов и
нет общих корней, иначе это будет кратный корень суммы кубов, а у многочлена
кратных
корней нет.
Тогда многочлен имеет степень
) (старшие коэффициенты не сократятся) и не имеет корней,
поскольку выражение
равно 0 только при
. Но такого делителя у многочлена
нет.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Применим формулу суммы кубов:
При имеем
, откуда
, то есть
.
Значит, многочлен имеет корнями числа
, откуда его степень не меньше
(поскольку он не тождественный
ноль). В частности, у одного из многочленов
и
степень не меньше
— не теряя общности, пусть у
. Тогда,
из равенства (*), степень многочлена
равна 0 , то есть это ненулевая константа. Но это невозможно, так
как из представления
видно, что у этого многочлена старшая степень не меньше, чем
максимум из степеней многочленов
и
, то есть, не меньше
. (Можно сказать иначе:
принимает сколь угодно большие значения, откуда
- тоже, то есть, последний многочлен не может быть
константой).
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!