Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#36697

Докажите, что

                  x+-y-
arctgx+ arctgy = arctg 1− xy ,

если x,y ∈ [0,1)  .

Подсказки к задаче

Подсказка 1

В каких пределах лежит правый арктангенс? Логично предположить, что в [0; π/2) (почему?). Могут ли существовать арктангенсы от х и у? Да запросто. А можем ли мы сказать точно, какие значения они принимают?

Подсказка 2

Верно, x от 0 до 1 -> сам arctg(x) ∈ [0; π/4). Причём и с arctg(y) то же самое. Давайте обозначим сумму этих арктангенсов за α. Тогда посмотрим на запись tg(α). Какую формулу мы можем применить?

Подсказка 3

Верно, нам поможет тангенс суммы! И получается тождество: tg(α) = (x+y)/(1-xy). Для чего были рассуждения первой подсказки? Для того, чтобы мы могли без зазрения совести применить функцию арктангенса к обеим частям уравнения и произнести заветное ЧТД :)

Показать доказательство

По формуле тангенса суммы

                -x+-y
tg(arctgx+ arctg y)= 1 − xy

Если x,y ∈[0,1)  , то             [   )
arctgx,arctgy ∈ 0,π4 . Отсюда               [  )
arctgx+ arctgy ∈ 0,π2 .

Значит, мы можем взять арктангенс от обеих частей формулы и получить:

arctgx+ arctgy = arctg x+-y-.
                  1− xy

Замечание. Обратите внимание, что в этой задаче самым важным является указание области значений суммы арктангенсов с учётом ограничений из условия для равносильности переходов между тождествами.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!