Аркфункции
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Подсказка 1
Видим аркфункцию, сразу стараемся избавиться от неё! Что для этого нужно сделать?
Подсказка 2
Да, достаточно перенести пятёрку вправо и взять синус от обеих частей уравнения! Таким образом, мы придём к уравнению: cos(x) = sin(x/5+π/10). Но уравнения от разных функций мы не умеем решать… Что надо сделать, чтобы уравнение стало более очевидным? И не забудьте про ограничения, когда работаете с аркфункциями!
Подсказка 3
Конечно, достаточно воспользоваться формулой приведения! То есть, sin(x/5+π/10) = cos(π/2 - (x/5+π/10)) = cos(2 π/5 – x/5). А также не забудем про ограничение на (x/5+π/10)! Поскольку это выражение равно арксинусу, то – π/2- π/10 ≤ x/5 ≤ π/2- π/10. Таким образом, мы получили, что cos(x) = cos(2π/5 – x/5). Осталось решить это уравнение, учитывая ограничения!
Подсказка 4
Верно, мы получаем, что |x| = 2π/5 – x/5 + 2πk, k ∈ ℤ. А из ограничений следует, что -3π ≤ x ≤ 2π.
Так как по определению
То уравнение равносильно
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!