Классическая вероятность, условная вероятность и формула Байеса
Ошибка.
Попробуйте повторить позже
Петя раскрашивает клетчатый прямоугольник размером У него 3 краски: белая, серая, черная. Найдите вероятность того, что при
случайном раскрашивании клеток, он раскрасит прямоугольник так, что соседние клетки в нём будут разного цвета, но при этом не
будет резкой смены цвета, то есть белая и чёрная клетки не будут соседними. (Клетки — соседние, если у них есть общая
сторона).
Источники:
Подсказка 1
Для нахождения ответа хотим узнать, сколько всего вариантов раскраски и сколько из них удовлетворяет условиям. Чтобы посчитать количество всех вариантов, учтем, что каждую из 8*12 клеток можно покрасить в любой из трех цветов. Как посчитать количество удовлетворяющих вариантов? Какую конструкцию здесь можно применить?
Подсказка 2
Попробуем объединить какие-то два цвета в один, например, чёрный и белый. Какие тогда возникают условия на взаимное расположение клеток нового цвета и серого?
Подсказка 3
Понятно, что клетки нового цвета не могут находиться рядом (иначе получаются либо одноцветные соседи, либо соседи вида белый-черный). Аналогичное можно сказать и про серые клетки. Какой вывод тогда можно сделать для количества вариантов такой двухцветной раскраски?
Подсказка 4
Тогда нам подходят только шахматные раскраски, их на данном поле будет две. Теперь обратно разобьем наш новый цвет на белый и чёрный. Логично, что все условия для соседей уже были соблюдены, поэтому любая клетка нового цвета может быть и белой, и чёрной. Тогда нам необходимо только посчитать количество этих клеток новых цветов в каждой из шахматных раскрасок (на обоих вариантах их одинаковое количество) и учесть, что для каждой из таких клеток вариантов выбора цвета 2. Ответ далее находится по стандартной формуле для вычисления вероятности по благоприятным и всем исходам.
Применим формулу классической вероятности где где общее число возможных исходов
так как всего в прямоугольнике
клеток, и каждую клетку можно окрасить в
цвета. Найдём количество благоприятных исходов —
Для этого перекрасим
временно белый и чёрный цвета в красный. Раскрасим данный прямоугольник в красно-серые цвета так, чтобы соседние клетки имели
разный цвет (шахматная раскраска). Таких раскрасок будет ровно две.
Теперь осталось для каждой из красных клеток выбрать произвольно один из двух цветов — белый или чёрный. Таких раскрасок
будет
а всего
В итоге ответ равен
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!