Тема . Количество способов, исходов, слагаемых и теория вероятностей

Классическая вероятность

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела количество способов, исходов, слагаемых и теория вероятностей
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#46106

На детском новогоднем празднике раздавали шоколадные и фруктовые конфеты. Дети подходили к деду Морозу, залезали рукой в его мешок и вынимали из него по две конфеты. Когда Петя подошел к мешку, он понял, что шоколадных конфет в мешке почти не осталось и вероятность получить две шоколадные конфеты в три раза меньше, чем шоколадную и фруктовую. Какое наименьшее число шоколадных конфет могло находиться в мешке деда Мороза в момент, когда Петя забирал свои конфеты, если после него еще не менее 10  детей получили свои конфеты до того, как мешок опустел?

Источники: Росатом - 2021, 11.4, комплект 2 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1!

Итак, заметим, что у нас сравниваются две вероятности. Давайте обозначим шоколадные конфеты за х, фруктовые за у. Попробуем подсчитать, какова вероятность вытянуть две шоколадные и одну шоколадную, одну фруктовую.

Подсказка 2!

Вероятность вытащить 2 шоколадные конфеты - С из x по 2 на С из x+y по 2, так как мы делим подходящие случаи на все возможные. Аналогичным образом подсчитайте вторую вероятность и вспомните про их отношение!

Подсказка 3!

Не забываем про условие о количестве детей и дорешиваем задачу!

Показать ответ и решение

Пусть в мешке было x  шоколадных и y  фруктовых. Найдём вероятность получить две шоколадные конфеты

      -C2x-  ----x(x-− 1)--
pchoc = C2x+y = (x+ y)(x+ y− 1)

По условию вероятность для одной шоколадной и одной фруктовой, которая равна

pfr− ch = C1x⋅C1y=-----2xy-----,
        C2x+y   (x+ y)(x+ y− 1)

в три раза больше, так что                     3x−3
3(x− 1)= 2y ⇐⇒   y = 2  . В итоге первое условие задачи эквивалентно нечётности x  (чтобы y  был целым).

По второму условию, включая Петю, конфеты брали ещё хотя бы 11  детей. Каждый берёт по две конфеты, откуда

         3
x+ y = x+ 2(x− 1)≥ 22 ⇐⇒   5x≥ 47  ⇐ ⇒  x ≥11
Ответ:

 11

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!