Тема . Применение классических комбинаторных методов к разным задачам

Инвариант

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#42215

Можно ли так расставить по кругу 100  чисел 1  и 101  число − 1  так, чтобы произведение любых трех подряд идущих чисел было положительным?

Источники: Муницип - 2020, Московская область, 7.3

Показать ответ и решение

Предположим, что такое возможно. Так как всего чисел 100+101= 201= 3⋅67  , то разобьем их все на 67  троек подряд идущих чисел. В каждой тройке произведение чисел положительно, поэтому произведение всех чисел также положительно. Но произведение 100  чисел   1  и 101  числа − 1  равно − 1  , то есть отрицательно.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!