Инвариант
Ошибка.
Попробуйте повторить позже
(a) В некоторых клетках бесконечной полосы лежат камни (может быть более одного камня в клетке, всего камней конечное число). Разрешается убрать два камня, лежащие в одной клетке, и положить один камень в клетку правее. Докажите, что конечная расстановка камней (то есть расстановка, в которой такую операцию нельзя будет сделать) не зависит от порядка действий и зависит только от первоначальной расстановки.
(b) То же самое, но действие такое: убирается по камню с клеток и и кладётся камень в клетку Докажите, что все расстановки, получаемые из заданной начальной, в которых в каждой клетке не более одного камня и нет двух соседних занятых клеток, одинаковые.
(a) Докажем, что данный процесс не может продолжаться бесконечно. Пусть в начале на полосе лежат камней. За каждый ход общее количество камней уменьшается на следовательно общее количество ходов не превосходит то есть конечно.
Пронумеруем все клетки, начиная с крайней левой, в которой находится камень, натуральными числами от до Пусть в клетки с номером в начале лежит камней. Рассмотрим величину
Докажем, что значение является инвариантом. Действительно, пусть за ход два камня из клетки с номером переложили в клетку с номером Пусть — значение после хода, тогда
Осталось заметить, что в конце процесса в каждой клетке находится не больше одного камня. Тогда — двоичная запись числа в которой все цифры определены единственным образом, а значит и количество камней в каждой клетке в конце процесса определено единственным образом.
(b) Аналогично предыдущему пункту покажем, что процесс не может продолжаться бесконечно. Пусть камень, лежащий в клетке с номером имеет вес (число Фибоначчи). Тогда операция не меняет сумму весов, а финале получится запись исходной суммы весов в фибоначчиевой системе счисления.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!