Тема . Применение классических комбинаторных методов к разным задачам

Полуинвариант

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85560

На доске написано 20  -буквенное слово, состоящее только из букв А и В. Назовем крутизной слова количество способов стереть некоторые его буквы так, чтобы на доске остались четыре буквы, образующих комбинацию ABBA. Например, слово ABBAAB имеет крутизну 2,  поскольку нужную комбинацию можно получить двумя способами: ABBA  АВ и ABB  А A  В. Какова наибольшая возможная крутизна слова, выписанного на доске?

Показать ответ и решение

Возьмём произвольное слово длины 20  и будем последовательно передвигать в нем буквы A, не уменьшая при этом крутизну слова. Ясно, что в нашем слове должно быть хотя бы две буквы B, иначе крутизна слова равна 0.  Далее, предположим, что в слове между двумя буквами В есть буква А, т.е. слово имеет вид …В …A  …В …Посмотрим, с какой стороны от буквы A  больше букв А, и передвинем выделенную букву A  в тот конец слова, где их меньше. Заметим, что при таком перемещении буквы А мы могли разрушить лишь слова вида ABBA и ABBA, которые давали вклад в размер крутизны исходного слова. Предположим, что мы переместили букву К налево. Тогда слова вида A  BBA сохранились, а вместо слов вида ABB A,  образованных буквой В слева от A  и двух букв В и буквы A,  мы получим как минимум столько же слов, которые образуются из нашей передвинутой буквы A,  двух любых букв У и любой буквы А, которая стояла в исходном слове справа от буквы А. Получается, что мы можем рассматривать только слова вида А...АВ...ВА...А. Если в левом блоке будет ℓ  букв А, а в правом − r  букв А, то крутизна такого слова равна ℓr⋅C220− (ℓ+r).

Заметим, что при фиксированной сумме ℓ+ r  произведение ℓr  будет максимальным, если числа ℓ  и r  отличаются не больше чем на 1 :  в противном случае, если, например, ℓ≥r+ 2,  то переместим одну букву K  из левого блока в правый, и крутизна изменится на

(ℓ− 1)(r+ 1)C220−(ℓ+r)− ℓrC220−(ℓ+r) =(ℓ− r− 1)C220− (ℓ+r) >0

Таким образом, можно считать, что r= ℓ  или r =ℓ− 1,  причем 1≤ ℓ≤9  (иначе в нашем слове не будет или букв А, или букв В). Теперь возьмем слово, в котором r=ℓ− 1,  и заменим последнюю букву В на букву А. При такой замене крутизна слова изменится на величину

ℓ2C220−2ℓ− ℓ(ℓ− 1)C220−(2ℓ−1) = ℓ(10− ℓ)(21− 4ℓ)

Значит, при ℓ≤ 5  крутизна слова после такой замены увеличивается, а при ℓ>5− уменьшается. Аналогично, посмотрим, что произойдёт, если в слове, в котором r=ℓ,  заменить первую букву В на букву A:

ℓ(ℓ+1)C220−(2ℓ+1)− ℓ2C220−2ℓ = ℓ(19− 2ℓ)(9− 2ℓ)

Получается, что при ℓ <5  крутизна слова после такой замены увеличивается, а при ℓ≥ 5  — уменьшается. Значит, мы можем последовательно совершать такие замены, сводя величину ℓ  к значению 5  и увеличивая в процессе крутизну. В итоге, наибольшая крутизна будет у слова, в котором ℓ=r =5,  и равна она 52 ⋅C210.

Замечание.

Последнюю часть решения можно провести по-другому. А именно, рассмотрим крутизну слова, в котором r=ℓ  , как функцию от ℓ:S(ℓ)=  ℓ2C2
  20−2ℓ  . Вычислим ее производную: S′(ℓ)= ℓ(8ℓ2− 117ℓ+ 380) . Нас интересует натуральная точка из отрезка [1;9]  , которая наиболее близка к нулю ℓ0  этой производной. Поскольку 4,5< ℓ0 < 5  , в качестве такой точки необходимо выбрать число ℓ= 5  , что и приводит нас к примеру. Аналогичные вычисления для случая r= ℓ− 1  также дают значение ℓ =5  , но крутизна такого слова оказывается меньше.

Ответ:

 52⋅C2 = 1125
    10

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!