Тема . Применение классических комбинаторных методов к разным задачам

Индукция в комбинаторике

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67957

В каждой клетке таблицы 100× 100  записано натуральное число. В каждой строке имеется по крайней мере 10 различных чисел, а в каждых четырех последовательных строках не более 15 различных чисел. Какое наибольшее количество различных чисел может быть в таблице?

Источники: СПБГУ-23, 11.1 (см. olympiada.spbu.ru)

Подсказки к задаче

Подсказка 1

У нас в каждой строке не менее 10 различных чисел, в подряд идущих четырех строчках не больше 15 различных...как будто следующие 3 строчки дают не очень много новых различных чисел. Это наблюдение легко сделать строгим, и останется привести пример)

Подсказка 2

Если вышло, что различных чисел не больше 175, это хорошо. Тогда вот идея для примера: в первой строчке давайте сделаем все числа от 1 до 10, а в 2, 3 и 4 поставим числа от 1 до 5 и от 11 до 15. Придумайте, как это обобщить на всю нашу доску)

Показать ответ и решение

В одной строке не менее 10 различных чисел, поэтому в следующих трех строках вместе появляется не более 5 новых чисел. Стало быть, первые четыре строки содержат не более 15 различных чисел, а каждые следующие три строки дают не более 5 новых чисел и всего чисел не больше, чем 15+32⋅5= 175.

Приведем пример на 175 чисел. Занумеруем строки числами от 1 до 100. В первой строке поставим числа от 1 до 10, а в строке с номерами от 3k− 1  до 3k+ 1  поставим числа 1 до 5 и числа от 5k+6  до 5k+ 10.  Тогда в каждой строке будет 5 уникальных чисел и еще числа от 1 до 5, т.е. ровно 10 различных чисел, а в каждых четырех строках будет ровно 15 различных чисел. Таким образом, в таблице будут числа от 1  до 5⋅33 +10= 175.

Замечание.

Доказать, что количество различных чисел в таблице не превосходит 175, можно по индукции. А именно, доказать, что в любых 3n +1  подряд идущих строках расположено не более чем 5(n +2)  различных чисел. База n =1  верна по условию. Установим переход от n  к n+ 1.  Рассмотрим 3n+ 4  подряд идущие строки. Пусть в четвертой с конца строке имеется k≥ 10  различных чисел. Тогда в трех самых нижних строках не более чем 15− k  различных чисел. А в оставшихся 3n +1  строке по индукционному предположению не больше 5(n +2)  чисел. Поэтому всего различных чисел будет более чем 5(n+ 2)+ 15− k= 5(n+ 5)− k≤5(n+ 3).

Ответ: 175

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!