Индукция в комбинаторике
Ошибка.
Попробуйте повторить позже
Двое играют в карточную игру. У каждого есть колода из 30 карт. Каждая карта красная, зелёная или синяя. По правилам красная карта сильнее зелёной, зелёная сильнее синей, а синяя сильнее красной. Карты одного цвета равны. Колода каждого игрока перед началом партии перемешивается и кладётся перед ним рубашкой вверх. После этого оба открывают по верхней карте своей колоды. Если карты разного цвета, то выигрывает тот, чья карта сильнее. Если карты одинаковые, то они уходят в сброс, а игроки открывают ещё по одной карте - и так до тех пор, пока карты не окажутся различными. Если же обе колоды кончились, а победитель не выявлен, объявляется ничья.
Известно, что у первого игрока в колоде по 10 карт каждого цвета. Второй игрок имеет право взять любую колоду из 30 карт. Может ли он подобрать колоду так, чтобы вероятность его выигрыша была больше 1/2?
Источники:
Подсказка 1
Разберемся с ответом. Если мы хотим доказывать, что нет, то нам надо доказывать, что для всевозможных колод у второго вероятность будет меньше 1/2. Это вообще непонятно как делать. А вот если же мы хотим доказывать, что ответ - да, то нам надо привести всего одну «хорошую» колоду. Давайте подумаем, если у нас дано количество синих, красных и зеленых карт каждого человека, то как бы для нас удобно было бы выражать вероятность, ведь наши переменные никак друг от друга не зависят(мы хотим выразить в общем случае вероятность и подставить одну и ту же переменную вместо всех для первого игрока в конце).
Подсказка 2
Наверное было бы удобно делать это рекуррентой, поскольку игра идет по шагам. Мы хотим как-то зафиксировать нашу конструкцию. Давайте подумаем как это можно было бы сделать не вводя кучи переменных. Пусть у нас r, g, b — количество соответственно красных, зеленых и синих карт у первого. Тогда, если мы хотим доказать, что при какой-то колоде все хорошо, то либо нам опять рассматривать все колоды и как-то усреднять (что то же самое, что и доказывать, что ответ «нет», в смысле рассмотрения всевозможных колод), либо брать какую-то конкретную колоду, методом крайнего. Какие колоды при этом кажутся интуитивными в таком случае?
Подсказка 3
Во-первых, интуитивной кажется колода копирующая первого игрока, но чисто навскидку, ситуации симметричны и вряд ли там будет строго больше 1/2 вероятность. Давайте также поймем, что скорее всего число 30 здесь просто так, кроме разве что того, что оно кратно 3. А это значит, что по нашему предположению, мы можем масштабировать колоду, при этом не меняя кардинально конструкцию взятия колоды второму, чтобы было выполнено условие. Но тогда это значит, что мы либо берём какую-то фиксированную долю от колоды для каждого цвета, а если так, то нужны еще согласованности с делимостью на эту долю и это как-то все очень шатко, если мы предполагаем, что можно масштабировать. Это наталкивает нас на мысль, что по хорошему бы брать какое то маленькое (чтобы и для маленьких размеров колод, скажем, меньших 30 условие было выполнено) фиксированное число карт одного цвета, тоже самое с другим, и все остальное - третьего цвета.
Подсказка 4
Чтобы можно было брать маленькое число карт в колоде и все работало, хотелось бы брать по 0 или 1 карте каких-то двух цветов, а все остальное отдавать другому. Ну и при этом понятно, что если мы будем выражать реккурентой нашу вероятность, то если мы, скажем, возьмем 1 зеленый, 1 синий и остальное - красным, то нам надо будет еще выражать как-то реккуренту для подсчета, когда у нас 0 зеленых, 1 синий и остальные - красные, 1 зеленых, 0 синих, остальные - красные, а также 0 зеленых, 0 синих, остальные -красные. Что как бы муторно. Тогда давайте возьмем остальные красными, а одну либо синей, либо зеленой.
Подсказка 5
Теперь надо выбрать - зеленая или синяя, но чисто интуитивно, чтобы вероятность была повыше, нам хотелось бы взять карту, как бы посильнее чем остальные, то есть красные. Ну тогда, давайте возьмем синюю. И теперь будем искать вероятность реккурентно. Напишите эти реккуренты, как мы выяснили, для вероятности, когда одна синяя, а остальные красные и когда только красные.
Подсказка 6
Если вероятность победы второго, когда только красные это v(r, g, b), где r, g, b - кол-во красных, зеленых и синих у первого соответственно, то v(r, g, b) = (g * 1 + r * v(r - 1, g, b)) / (r + g + b) - просто перебираем исходы и варианты, когда победим.
Подсказка 7
Напишите такую же рекурренту для u(r, g, b), где это вероятность когда одна синяя и остальные красные(очевидно, она будет выражаться через себя и v(r, g, b)), после чего попробуйте и для v, и для u найти общий вид реккуренты (очевидно, сначала для v, так как она проще и в итоге, искать надо u), перебирая маленькие значения, после чего задача будет решена.
Подсказка 8
Не забудьте доказать эти формулы по индукции, найдя базу и сделав переход (быть может сам переход натолкнет вас на вид, как должны выглядеть v и u).
Рассмотрим колоду, в которой одна синяя карта, а все остальные красного цвета. Найдём в этом случае вероятность выигрыша второго игрока. Пусть вероятность выигрыша, когда у первого игрока красных карт, зелёных, синих, а у второго одна синяя и все остальные красные (при условии ). Также пусть - вероятность выигрыша, когда у второго игрока все карты красные.
Легко видеть, что
при (если у первого выпала зелёная, то второй выиграл, если синяя, то проиграл, если красная, то игроки потратили по одной красной карте и продолжили игру). Ясно также, что (в этом случае будет ничья). Отсюда по индукции получаем, что при и .
Аналогично
(Здесь мы рассматриваем всевозможные пары ходов: одна из карт первого и одна из такого же количества карт второго. Если у первого выпала зелёная, то второй выиграет во всех случаях, кроме одного; если красная, то второй либо выкладывает синюю и побеждает, либо выкладывает красную и попадает в аналогичную игру с меньшим числом карт; если у первого синяя, то второй имеет шанс на выигрыш, только если выложит синюю и попадёт в новую игру со всеми красными). Кроме этого, .
Легко проверить (догадаться сложнее... можно, например, угадать формулу, вручную посчитав вероятности для малых ), что эти равенства задают формулу
при . Тогда
при всех , в том числе и при .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!