Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела графы и турниры
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68797

На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Некоторые жители острова дружат друг с другом (дружба взаимна). Утром каждый житель острова заявил, что дружит с нечётным числом рыцарей. Вечером каждый житель острова заявил, что дружит с чётным числом лжецов. Может ли количество жителей этого острова быть равно 2021?

Источники: Курчатов-2021, 11.1 (см. olimpiadakurchatov.ru)

Показать ответ и решение

Рассмотрим граф, каждая вершина — рыцарь либо лжец. Ребро — дружба. По условию из вершин-рыцарей и из вершин-лжецов исходит нечетное количество ребер. Предположим, что в графе 2021 вершина. Получаем противоречие с леммой о рукопожатиях — количество вершин нечетной степени нечетно.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!