Эйлеровы графы
Ошибка.
Попробуйте повторить позже
В связном графе все рёбра раскрашены в красный и чёрный цвет. Для каждой вершины количество выходящих красных рёбер равно количеству выходящих чёрных. Докажите, что есть эйлеров цикл, в котором цвета рёбер чередуются.
Пусть данный граф — . Начнем чередующуюся цепь из произвольной вершины , и будем продлевать ее, выбирая каждый раз новое ребро. Так как степени вершин четные, то, попав в некоторую вершину, мы всегда будем иметь в распоряжении еще не пройденное ребро другого цвета. Таким образом, построение цепи обязательно закончится в вершине , и будет циклом. Если содержит все ребра графа , то построен нужный эйлеров цикл. В противном случае, удалив из ребра , получим граф . Так как у всех вершин в и одинаковое количество выходящих черных и красных, то и будет обладать этим свойством. В силу связности графы и должны иметь хотя бы одну общую вершину . Теперь, начиная из , построим в цикл подобно тому, как построили . Объединим циклы и следующим образом: пройдем часть от вершины до вершины , затем пройдем цикл , затем — оставшуюся часть от до .
Если объединенный цикл не эйлеров, то, проделав аналогичные построения, получим еще больший цикл. Поскольку число ребер в графах, не попавших в строящийся цикл, то процесс закончится построением чередующегося эйлерова цикла.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!