Гуляем по графу
Ошибка.
Попробуйте повторить позже
За круглым столом сидят человек. Может ли случиться, что у каждых двух из них, между которыми сидит чётное число человек, есть за столом общий знакомый, а у каждых двух, между которыми сидит нечётное число человек, общего знакомого нет?
Подсказка 1
Давайте пойдëм от противного, пусть такое возможно. Рассмотрите произвольного человека A. С каким количеством людей у него есть общие знакомые?
Подсказка 2
Для упрощения людей можно занумеровать. Если посмотреть на двух человек, у каждого из которых есть общий знакомый с A, может ли у них между собой быть общий знакомый?
Предположим так рассадить людей удалось. Занумеруем их по часовой стрелке и заметим, что если номера двух сидящих имеют одинаковую чётность, то между ними сидит нечётное число человек. Возьмём одного из сидящих — Через чётное число человек от сидит человек. Все они сидят на местах одной чётности, поэтому не могут иметь общих знакомых. Значит, имеется различных общих знакомых с этими людьми. У этих последних человек есть общий знакомый то есть все они имеют номера разной чётности. Но это невозможно.
Не может
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!