Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела графы и турниры
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83388

Дан граф G =(V,E)  на n  вершинах: сопоставим каждой вершине v  переменную x
 v  . Пусть T  — множество остовных деревьев графа G  (то есть поддеревьев, содержащих все вершины). Рассмотрим остовный многочлен от n  переменных x1,...,xn

                ∑  ∏  deg v−1
PG(x1,x2,...,xn)=       xv  S  .
               S∈Tv∈V

Назовем связный граф хорошим, если PG (x1,...,xn)  раскладывается на линейные множители (в частности, если PG  — тождественный ноль), иначе плохим.

1. Найдите PK4(1,2,3,4)  , где K4  — полный граф на 4 вершинах.

2. Докажите, что цикл на пяти вершинах является плохим графом.

3. Пусть G  — хороший граф, U  — некоторое подмножество его вершин. Граф H  состоит из всех вершин, лежащих в U  , и всех ребер графа G  , соединяющих эти вершины. Докажите, что граф H  тоже хороший.

4. Назовём раздвоением вершины v  операцию, добавляющую в граф вершину v′ , соединенную ровно с теми же вершинами, что и   v  . Докажите, что граф, получающийся из одной вершины операциями добавления висячей вершины, раздвоения вершины с добавлением ребра   ′
vv и раздвоения вершины без добавления ребра   ′
vv , является хорошим.

Источники: ЮМШ - 2024, сюжет 2 (см. yumsh.ru)

Подсказки к задаче

Пункт 1, подсказка 1

Нас просят найти значения многочлена для графа К₄. Может, стоит подумать о его остовных деревьях?

Пункт 1, подсказка 2

В К₄ бывает только 2 вида остовных деревьев. Это либо цепь длины 4, либо три вершины, "висящие" на четвертой. А что нам дадут данные деревья в основный многочлен?

Пункт 1, подсказка 3

Остовные деревья первого вида дадут xᵢxⱼ, а второго - (xᵢ)², где i - вершина остова. Осталось только аккуратно записать искомый многочлен.

Пункт 2, подсказка 1

Для начала, как и в прошлом пункте, рассматриваем остовные деревья и записываем многочлен.

Пункт 2, подсказка 2

Проверьте, у Вас должен был получиться такой многочлен: x₁x₂x₃ + x₂x₃x₄ + x₃x₄x₅ + x₄x₅x₁ + x₅x₁x₂. Вспомните, какой граф мы называем "плохим"?

Пункт 2, подсказка 3

Заметим, что наш многочлен линеен по каждой переменной. Попробуйте показать, что у нас каждая переменная будет "жить" лишь в одной из скобок.

Пункт 2, подсказка 4

Убедитесь, что переменные разбиваются только на скобки вида 2-2-1 и 3-1-1. Что из этого следует?

Пункт 3, подсказка 1

Давайте подумаем, как связность U будет влиять на остовный многочлен?

Пункт 3, подсказка 2

Если U несвязно, то в качестве многочлена мы получим 0. А можем ли мы при связном U выкидывать по одной вершины с сохранением связности?

Пункт 3, подсказка 3

Давайте "подвесим" граф за множество U и будем удалять вершины, начиная с самого нижнего уровня. Что тогда получится?

Пункт 3, подсказка 4

Удалим вершину v. Это равносильно подстановке 0 в xᵥ. Какой вывод можно получить?

Пункт 3, подсказка 5

У нас получится, что все слагаемые c xᵥ обнуляются, следовательно, останутся лишь те, где v - висячая вершина. Как устроены такие деревья?

Пункт 3, подсказка 6

Мы выбираем дерево в графе G\{v}, а потом одна из вершин окрестности v соединяется с v. Какой вид у нас примет тогда остовный многочлен?

Пункт 3, подсказка 7

Докажите, что многочлен останется раскладываемым на множители.

Пункт 4, подсказка 1

Пусть G₁ - граф, получаемый из G на n вершинах добавлением вершины vₙ₊₁, как в операции раздвоения вершины. Давайте для начала подумаем про остовный многочлен графа G. Надо понять, как устроены деревья этого графа.

Пункт 4, подсказка 2

Возьмем лес на всех вершинах, кроме vₙ. Что обязательно должно быть в каждой его компоненте?

Пункт 4, подсказка 3

В каждой компоненте должна быть хотя бы одна вершина из окрестности vₙ в графе G. Как должна быть связана вершина vₙ с этим множеством?

Пункт 4, подсказка 4

vₙ будет соединена ровно с одной такой вершиной из каждой компоненты. Как тогда может быть представлен наш остовный многочлен?

Пункт 4, подсказка 5

Обозначьте за L множество таких лесов, за t(K) - число компонент связности в лесу K, за A₁, A₂, ... , Aₜ - множества пересечений окрестности вершины v в графе G с компонентами связности леса K. Запишите многочлен, пользуясь этими обозначениями.

Пункт 4, подсказка 6

Теперь посмотрим на деревья в графе G₁. Какой лес мы возьмем там?

Пункт 4, подсказка 7

Мы вновь возьмем лес, содержащий все вершины, кроме vₙ, но теперь еще не будем брать вершину vₙ₊₁. Снова подумаем, что должно быть в каждой его компоненте.

Пункт 4, подсказка 8

Как и ранее, в каждой компоненте должна быть хотя бы одна вершина из окрестности vₙ в графе G, после чего одна из долей будет соединена с вершинами vₙ и vₙ₊₁, а все остальные доли - лишь с одной из них. Теперь запишите и преобразуйте остовный многочлен графа G₁, используя те же обозначения, что и для графа G.

Пункт 4, подсказка 9

У Вас должно получиться, что для графа G₁ остовный многочлен от (x₁, x₂, ..., xₙ₊₁) равен остовному многочлену для графа G от (x₁, x₂, ..., xₙ + xₙ₊₁), умноженному на сумму вершин из окрестности vₙ в графе G.

Пункт 4, подсказка 10

Давайте теперь рассмотрим граф G₂, получаемый из G₁ соединением вершин vₙ и vₙ₊₁. Может быть, леса G₁ и G₂ похожи?

Пункт 4, подсказка 11

Мы снова рассмотрим лес, как с графом G₁, но теперь либо не будем проводить ребро между vₙ и vₙ₊₁, либо проведем и соединим каждую из долей ровно с одной из вершин. Какие выводы можно сделать из этих построений?

Пункт 4, подсказка 12

В первом случае мы получим такое же слагаемое, как в G₁. Тогда что нам дает сумма таких слагаемых?

Пункт 4, подсказка 13

Эти слагаемые дадут нам остовный многочлен графа G₁. Осталось только разобраться с суммой вторых слагаемых. Это можно сделать при помощи тех же обозначений, что и для графа G.

Показать ответ и решение

1. В полном графе на четырех вершинах есть только 2 вида остовных деревьев: 1) цепь длины 4; 2) три вершины, "висящие"на четвертой.

Каждое дерево первого вида даст в остовный многочлен одночлен xixj  , i⁄= j  , причем каждый одночлен будет представлен 2 раза.

Каждое дерево второго вида даст в остовный многочлен одночлен x2i  , где i  — "вершина"остова.

В итоге получим многочлен:

pict

________________________________________________________________________________________________________________________________________________________________________________________________________

2. Распишем PC = x1x2x3+ x2x3x4+ x3x4x5+ x4x5x1+ x5x1x2
  5  . Поскольку многочлен PC
  5  линеен по каждой переменной, получаем, что каждая из переменных живет только в одной из скобок. Тогда переменные вынуждены разбиться на скобки 2-2-1 или 3-1-1, что дает нам не более четырех мономчиков, противоречие.

_________________________________________________________________________________________________________________________________________________________________________________

3. Давайте сначала заметим, что можно последовательно выкидывать вершины по одной с сохранением связности, если U  связно. (Если несвязно, то просто 0 получится и все).

Для этого нужно подвесить за U  и поочередно удалять вершины с самого нижнего уровня. Теперь нужно понять, что при удалении только одной вершины v  граф остается хорошим. Для этого подставим 0 в xv  . Получим, что все слагаемые, в которые xv  входило в хотя бы первой степени, обнулились, а значит остались в точности те, где v  — висячая вершина. А все такие деревья устроены так: выбрано дерево в графе G∖v  , и потом одна из вершин из окрестности v  соединена с v  . Тогда многочлен после подстановки нуля равен               ∑
PG∖v(x1,...,xn)⋅( u∈N(v)xu)  . Подстановка нуля сохраняет раскладываемость на множители, значит PG∖v  тоже раскладываемый, значит, при удалении вершины v  граф останется хорошим.

_________________________________________________________________________________________________________________________________________________________________________________

4. Сначала докажем вспомогательный факт про такой тип графов.

Лемма о раздвоении без добавления ребра. Пусть дан граф G  на n  вершинах. Рассмотрим граф G1  , полученный из G  добавлением вершины vn+1  и соединением ее со всеми вершинами из NG(vn)  , но не самой vn  . Тогда

                                   (  ∑      )
PG1(x1,x2,...,xn+1)= PG(x1,...,xn+ xn+1)(       xv).
                                    v∈NG(vn)

Доказательство. Давайте заметим, что любое дерево в графе G  устройство следующим образом — на всех вершинах, кроме vn  , берется некоторый лес, такой, что в каждой компоненте есть хотя бы одна вершина из NG(vn)  , и потом вершина vn  соединяется с ровно одной вершиной из каждой компоненты. Обозначим за L  множество всех таких лесов, за t(K)  — число компонент связности в лесу K  , и назовем A1,A2,...At  пересечения множеств NG (v)  с компонентами связности леса K  . Тогда из рассуждений выше

                   (                   (     )       )
                ∑  (  ∏     degK(v)−1t(∏K)( ∑   )  t(K)−1)
PG(x1,x2,...,xn) =K ∈L  v∈V|v⁄=vnxv       i=1  v∈Aixv xn     .

Теперь давайте поймём, как устроены деревья в G1  . Там мы тоже берём лес, который содержит все вершины, кроме vn  , vn+1  , и такой, что каждая его компонента содержит хотя бы одну вершину из NG(vn)  , после чего одна из долей соединяется с обеими вершинами из vn  и vn+1  , а каждая из остальных t(K)− 1  долей — с ровно одной из этих вершин. Тогда в тех же обозначениях получается, что

pict

Теперь очевидно, что второй сомножитель равен PG(x1,x2,...,xn+ xn+1)  , и лемма доказана.

Лемма 2 (Лемма о раздвоении с добавлением ребра). Пусть дан граф G,|G|= n  . Рассмотрим граф G2  , получаемый из G  добавлением вершины vn+1  и соединением её со всеми вершинами из NG(vn)  , а также с самой vn  . Тогда

                                     (                   )
PG2(x1,x2,...,xn+1)= PG(x1,x2,...,xn+ xn+1)(   ∑    xv+xn +xn+1) .
                                       v∈NG (vn)

Доказательство. Пусть G1  — граф из леммы 1.  Мы в лемме 1  уже выяснили как устроены деревья в графе G,  поэтому нужно разобраться с тем, как они устроены в G2  . Заметим, что они устроены так: мы снова берем лес с такими же условиями, а дальше делаем одно из двух — либо не проводим ребро между vn  и vn+1  , и это слагаемое такое же как в G1  , либо проводим, и тогда каждую из долей соединяем с ровно одной из этих вершин. Стало быть, сумма всех первых слагаемых даст нам PG1  , а сумма вторых равна

pict

Тогда получается, что

pict

доказали требуемое.

Ответ:

1. (x1+ x2 +x3+ x4)2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!