Связность и связные подграфы (клики)
Ошибка.
Попробуйте повторить позже
Вася посмотрел на граф на
вершинах и поставил на каждую вершину
переменную
После чего рассмотрел
выражение
Пусть и
— минимум и максимум
(a) Пусть степень каждой вершины в графе равна Найдите
(b) Докажите, что вершины графа можно покрасить в
цвет, так что любые две соседние вершины получат разные
цвета.
(c) Пусть — максимум выражения
при неотрицательных
с суммой
Докажите, что
где — максимальный размер множества вершин графа
попарно соединенных ребрами.
Источники:
(a)
Оценка. Занесём 2 в числитель и оценим каждое слагаемое следующим образом
Получим
Так как у каждой вершины степень у каждой вершины в графе равны то каждая
в числителе встретиться ровно
раз,
следовательно
Пример. Поставим во все вершины получим
(b) Предположим, что это не так, то есть граф так покрасить нельзя. Тогда по теореме Брукса найдётся подграф, в
котором степени вершин хотя бы Поставим в вершины этого подграфа
а во все остальные вершины графа
Тогда значение выражения
станет равным
а это противоречит тому, что
— максимум выражения
(c) Кликой графа называется подмножество его вершин, любые две из которых соединены ребром. Аналогично определяется антиклика
Пример. Найдём в графе максимальную клику, в его вершины поставим а в остальные
Оценка.
Рассмотрим расстановку, на которой достигается Если там есть вершина с 0, удалим её. По предположение
если максимальная антиклика не уменьшилась, и
если максимальная антиклика уменьшилась. Таким образом сделаем все числа ненулевыми.
Обозначим — сумму чисел в смежных с
вершинах. Заметим, что если
и
— несмежные вершины и
то можно
заметить
на
Общая сумма не измениться, а
увеличиться, противоречие. Следовательно, если
и
— несмежные
вершины, то
Рассмотрим антиграф, проверим два случая:
1) Если он связен. Значит, для любых вершин и
обозначим это число за
Следовательно по предположению
Рассмотрим вершину максимальной антиклики.
Следовательно, число в плюс в вершинах, не смешных с
меньше
Просуммируем по врем вершинам максимальной антиклики.
Мы посчитали каждое число неменее 1 раза, значит сумма всех меньше, чем
. Противоречие, следовательно, такое
невозможно.
2) Антиграф не связен.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!