Рыцари и лжецы
Ошибка.
Попробуйте повторить позже
Каждый из 2024 людей является рыцарем или лжецом. Некоторые из них дружат друг с другом, причём дружба взаимна. Каждого из них спросили про количество друзей, и все ответы оказались различными целыми числами от 0 до 2023. Известно, что все рыцари отвечали на вопрос верно, а все лжецы изменяли истинный ответ ровно на 1. Какое наименьшее число лжецов могло быть среди этих людей?
Оценка. Людей обозначим вершинами, номер вершины будет означать ответ соответствующего человека, а если пара людей дружит, то проведем ребро между соответствующими вершинами.
Пусть — множество всех людей, которые назвали числа от 0 до
а
— множество всех людей, которые назвали числа от
до
Пусть
— степень вершины
Тогда по условию
если
— рыцарь, и
в противном случае. Пусть
в множестве
ровно
лжецов, а в множестве
— ровно
Оценим количество ребер между людьми из разных множеств
и
С одной стороны, не больше суммы степеней вершин множества
откуда
С другой стороны, из каждой вершины множества
не более
ребер идет в вершины множества
и значит, не менее
ребер идет в вершины множества
Отсюда
Получаем неравенство:
откуда Это означает, что всего лжецов не менее
Пример. Как и прежде, номер человека будет означать его ответ. Возьмем два множества людей:
и
Пусть в множестве никакие двое людей не дружат друг с другом, а в множестве
— любые двое дружат. Далее, пусть
человек
и
дружат тогда и только тогда, когда
Тогда у человека
всего
друг:
У человека будет всего
друзей:
из множества и все люди множества
кроме него самого. При этом все люди в
— лжецы, а в
— рыцари. Видим, что все
условия задачи выполняются.
1012
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!