Вписанная и вневписанная окружности
Ошибка.
Попробуйте повторить позже
Вписанная окружность треугольника с центром в точке
касается сторон
соответственно в точках
. Точки
и
симметричны вершине
относительно прямых
и
соответственно. Окружности,
построенные на отрезках
и
как на диаметрах, вторично пересекаются в точке
. Докажите, что
лежит на прямой
.
Источники:
Подсказка 1
Хочется с самого начала понять, что за точка K нам дана. Заметим, что одна сторона у наших треугольников одинаковая на будущее. К тому же из условия вытекает, что какие-то углы прямые. Тогда чем же является точка K на нашей картинке?
Подсказка 2
Верно, точка K лежит на отрезке FE и является серединой, так как FIE равнобедренный. Теперь когда объекты на картинке так или иначе связаны, то можно вернуться к вопросу задачи. Что если посмотреть на четырёхугольник NFME. Чем в нём является K? Если же K будет лежать на NM, то что должно выполняться?
Подсказка 3
Верно, K середина диагонали и, если NFME будет параллелограммом, то K как раз будет лежать на NM. Осталось доказать это. Причём мы знаем, что NF =AF = AE = EM, как отрезки касательных из одной точки и симметрии. Остаётся только ввести стандартно углы треугольника, посчитать немного, и победа!
Докажем, что точка является серединой отрезка
. Действительно, окружности построены на
и
как на диаметрах,
поэтому
Следовательно, постольку и
— высота равнобедренного треугольника
точка
является серединой его
основания.
Теперь достаточно проверить, что четырехугольник является параллелограммом. Это так, поскольку
где первое и третье равенство следует из симметрии, а второе верно, поскольку и
являются отрезками касательных,
проведенных из одной точки.
Осталось показать, что Для этого достаточно доказать, что
тогда аналогично
откуда следует требуемое.
Последнее верно, ведь
где обозначает угол между
и
(с другими аналогично).
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!